Renault S, Bonnemain J L, Faye L, Gaudillere J P
Laboratoire de Physiologie et Biochimie Végétales (Centre National de la Recherche Scientifique, Unité de Recherche Associeé 574), 25 rue du faubourg St Cyprien, 86000 Poitiers, France.
Plant Physiol. 1992 Dec;100(4):1815-22. doi: 10.1104/pp.100.4.1815.
The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ.
苔藓植物的孢子体在碳营养方面依赖于配子体。对于金发藓属物种的孢子体来说尤其如此,人们普遍认为蔗糖是在薄壁细胞中进行长距离运输的主要糖类形式。在台湾金发藓中,蔗糖是孢子体和配子体组织中的主要可溶性糖,在吸器中发现其浓度最高(约230毫摩尔)。相比之下,从鞘状体质外体收集到的糖类主要是己糖,只有微量的蔗糖和海藻糖。对氯汞苯磺酸盐是一种细胞壁转化酶的非渗透性抑制剂,它能显著降低己糖与蔗糖的比例。最高的细胞壁转化酶活性(pH 4.5)位于鞘状体,而可溶性转化酶的最高活性(pH 7.0)则在鞘状体和吸器中均有发现。葡萄糖的吸收是由载体介导的,但与氨基酸吸收相比,它对外部pH和跨膜电势梯度的依赖性较弱(S. 雷诺、C. 德斯佩盖尔 - 考辛、J.L. 博纳曼、S. 德尔罗特 [1989] 《植物生理学》90: 913 - 920)。此外,向孵育培养基中添加5或50毫摩尔葡萄糖会导致转移细胞跨膜电位差出现轻微去极化,且对该培养基的pH没有影响。葡萄糖被吸收到吸器后会转化为蔗糖。这些结果证明了在配子体/孢子体界面处蔗糖的不连续性。它们表明,在这个界面处蔗糖转化为葡萄糖和果糖,以及随后吸器细胞吸收己糖后再重新转化为蔗糖,主要控制了后一个器官中的糖类积累。