Duggan J, Gassman M
Department of Biological Sciences, The University of Illinois at Chicago Circle, Chicago, Illinois 60680.
Plant Physiol. 1974 Feb;53(2):206-15. doi: 10.1104/pp.53.2.206.
Primary leaves of 7- to 9-day-old etiolated seedlings of Phaseolus vulgaris L. var. Red Kidney infiltrated in darkness with aqueous solutions of alpha, alpha'-dipyridyl, o-phenanthroline, pyridine-2-aldoxime, pyridine-2-aldehyde, 8-hydroxyquinoline, or picolinic acid synthesize large amounts of magnesium protoporphyrin monomethyl ester and lesser amounts of magnesium protoporphyrin, protoporphyrin, and protochlorophyllide. Pigment formation proceeds in a linear manner for up to 21 hours after vacuum infiltration with 10 mm alpha, alpha'-dipyridyl. Etiolated tissues of Zea mays L., Cucumis sativus L., and Pisum sativum L. respond in the same way to dipyridyl treatment. Compounds active in eliciting this response are aromatic heterocyclic nitrogenous bases which also act as bidentate chelators and form extremely stable complexes with iron; other metal ion chelators, such as ethylenediaminetetraacetic acid, salicylaldoxime, and sodium diethyldithiocarbamate, do not elicit any pigment synthesis. The ferrous, ferric, cobaltous, and zinc chelates of alpha, alpha'-dipyridyl are similarly ineffective. If levulinic acid is supplied to etiolated bean leaves together with alpha, alpha'-dipyridyl, porphyrin production is inhibited and delta-aminolevulinic acid accumulates in the tissue. Synthesis of porphyrins proceeds in the presence of 450 micrograms per milliliter chloramphenicol or 50 micrograms per milliliter cycloheximide with only partial diminution. We propose that heme or an iron-protein complex blocks the action of the enzyme(s) governing the synthesis of delta-aminolevulinic acid in etiolated leaves in the dark and that iron chelators antagonize this inhibition, leading to the biosynthesis of delta-aminolevulinic acid and porphyrins.
在黑暗中,用α,α'-联吡啶、邻菲罗啉、吡啶 - 2 - 醛肟、吡啶 - 2 - 醛、8 - 羟基喹啉或吡啶甲酸的水溶液浸润7至9日龄的菜豆(Phaseolus vulgaris L. var. Red Kidney)黄化幼苗的初生叶,可合成大量的镁原卟啉单甲酯以及少量的镁原卟啉、原卟啉和原叶绿素酸酯。在用10 mM α,α'-联吡啶进行真空浸润后的长达21小时内,色素形成呈线性方式进行。玉米(Zea mays L.)、黄瓜(Cucumis sativus L.)和豌豆(Pisum sativum L.)的黄化组织对联吡啶处理的反应相同。引发这种反应的活性化合物是芳香族杂环含氮碱,它们也作为双齿螯合剂,与铁形成极其稳定的络合物;其他金属离子螯合剂,如乙二胺四乙酸、水杨醛肟和二乙基二硫代氨基甲酸钠,不会引发任何色素合成。α,α'-联吡啶的亚铁、铁、钴和锌螯合物同样无效。如果将乙酰丙酸与α,α'-联吡啶一起供应给黄化的菜豆叶片,卟啉的产生会受到抑制,而δ-氨基乙酰丙酸会在组织中积累。在每毫升450微克氯霉素或每毫升50微克环己酰亚胺存在的情况下,卟啉的合成仍会进行,但会有部分减少。我们提出,血红素或铁 - 蛋白复合物在黑暗中会阻断黄化叶片中控制δ-氨基乙酰丙酸合成的酶的作用,而铁螯合剂会拮抗这种抑制作用,从而导致δ-氨基乙酰丙酸和卟啉的生物合成。