Suppr超能文献

莱茵衣藻对无机碳的吸收。

Inorganic Carbon Uptake by Chlamydomonas reinhardtii.

机构信息

Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824.

出版信息

Plant Physiol. 1985 Feb;77(2):253-8. doi: 10.1104/pp.77.2.253.

Abstract

The rates of CO(2)-dependent O(2) evolution by Chlamydomonas reinhardtii, grown with either air levels of CO(2) or air with 5% CO(2), were measured at varying external pH. Over a pH range of 4.5 to 8.5, the external concentration of CO(2) required for half-maximal rates of photosynthesis was constant, averaging 25 micromolar for cells grown with 5% CO(2). This is consistent with the hypothesis that these cells take up CO(2) but not HCO(3) (-) from the medium and that their CO(2) requirement for photosynthesis reflects the K(m)(CO(2)) of ribulose bisphosphate carboxylase. Over a pH range of 4.5 to 9.5, cells grown with air required an external CO(2) concentration of only 0.4 to 3 micromolar for half-maximal rates of photosynthesis, consistent with a mechanism to accumulate external inorganic carbon in these cells. Air-grown cells can utilize external inorganic carbon efficiently even at pH 4.5 where the HCO(3) (-) concentration is very low (40 nanomolar). However, at high external pH, where HCO(3) (-) predominates, these cells cannot accumulate inorganic carbon as efficiently and require higher concentrations of NaHCO(3) to maintain their photosynthetic activity. These results imply that, at the plasma membrane, CO(2) is the permeant inorganic carbon species in air-grown cells as well as in cells grown on 5% CO(2). If active HCO(3) (-) accumulation is a step in CO(2) concentration by air-grown Chlamydomonas, it probably takes place in internal compartments of the cell and not at the plasmalemma.

摘要

富营养化藻华水华发生的机制与控制策略研究进展

摘要:近年来,富营养化导致的藻华水华频繁发生,严重威胁了人类的生产生活和生态系统的健康。藻华水华的发生机制十分复杂,涉及到物理、化学、生物等多个方面。本研究对藻华水华的发生机制进行了综述,包括富营养化水体中藻类的生长繁殖、藻华水华的形成和维持、藻华水华对生态系统和人类健康的影响等方面。同时,本研究还探讨了藻华水华的控制策略,包括物理、化学和生物方法等,以及它们的优缺点和适用范围。最后,本文提出了未来研究的方向,旨在为藻华水华的防控提供科学依据。

相似文献

1
Inorganic Carbon Uptake by Chlamydomonas reinhardtii.
Plant Physiol. 1985 Feb;77(2):253-8. doi: 10.1104/pp.77.2.253.
2
Two Systems for Concentrating CO(2) and Bicarbonate during Photosynthesis by Scenedesmus.
Plant Physiol. 1990 Mar;92(3):622-9. doi: 10.1104/pp.92.3.622.
4
Uptake of inorganic carbon by isolated chloroplasts from air-adapted dunaliella.
Plant Physiol. 1989 Apr;89(4):1264-9. doi: 10.1104/pp.89.4.1264.
6
Uptake of CO(2) and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama.
Planta. 2002 Sep;215(5):763-9. doi: 10.1007/s00425-002-0817-2. Epub 2002 Jul 31.
8
Inorganic-carbon uptake by the marine diatom Phaeodactylum tricornutum.
Planta. 1986 Oct;169(2):222-7. doi: 10.1007/BF00392318.
9
The acquisition of inorganic carbon by four red macroalgae.
Oecologia. 1992 Dec;92(3):317-326. doi: 10.1007/BF00317457.
10
Utilization of Inorganic Carbon by Ulva lactuca.
Plant Physiol. 1991 Dec;97(4):1439-44. doi: 10.1104/pp.97.4.1439.

引用本文的文献

1
Identification and characterization of the COPII vesicle-forming GTPase Sar1 in .
Plant Direct. 2024 Jun 16;8(6):e614. doi: 10.1002/pld3.614. eCollection 2024 Jun.
2
Carbonic anhydrases in the cell wall and plasma membrane of are required for optimal plant growth on low CO.
Front Mol Biosci. 2024 Feb 22;11:1267046. doi: 10.3389/fmolb.2024.1267046. eCollection 2024.
3
Structure and function of LCI1: a plasma membrane CO channel in the Chlamydomonas CO concentrating mechanism.
Plant J. 2020 Jun;102(6):1107-1126. doi: 10.1111/tpj.14745. Epub 2020 Apr 18.
4
Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.
Plant Biotechnol J. 2016 May;14(5):1302-15. doi: 10.1111/pbi.12497. Epub 2015 Nov 5.
8
Inorganic-carbon uptake by a small-celled strain of Stichococcus bacillaris.
Planta. 1988 Oct;175(4):460-4. doi: 10.1007/BF00393065.
9
Inorganic-carbon transport in some marine eukaryotic microalgae.
Planta. 1989 Dec;178(4):450-5. doi: 10.1007/BF00963814.
10
Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.
Photosynth Res. 2013 Nov;117(1-3):121-31. doi: 10.1007/s11120-013-9865-7. Epub 2013 Jun 18.

本文引用的文献

1
Reduced Inorganic Carbon Transport in a CO(2)-Requiring Mutant of Chlamydomonas reinhardii.
Plant Physiol. 1983 Oct;73(2):273-6. doi: 10.1104/pp.73.2.273.
3
Aminooxyacetate stimulation of glycolate formation and excretion by chlamydomonas.
Plant Physiol. 1983 Aug;72(4):1075-83. doi: 10.1104/pp.72.4.1075.
6
Utilization of Exogenous Inorganic Carbon Species in Photosynthesis by Chlorella pyrenoidosa.
Plant Physiol. 1980 May;65(5):774-9. doi: 10.1104/pp.65.5.774.
7
Measurement of carbon dioxide compensation points of freshwater algae.
Plant Physiol. 1979 Nov;64(5):892-5. doi: 10.1104/pp.64.5.892.
8
COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.
Plant Physiol. 1949 Jan;24(1):1-15. doi: 10.1104/pp.24.1.1.
9
The regulation of glycolate metabolism in Chlamydomonas reinhardtii.
Biochim Biophys Acta. 1969 Jul 30;184(2):263-70. doi: 10.1016/0304-4165(69)90028-2.
10
A simple method for calculating Km and V from a single enzyme reaction progress curve.
Biochim Biophys Acta. 1977 Jan 11;480(1):1-13. doi: 10.1016/0005-2744(77)90315-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验