Suppr超能文献

LCI1 的结构与功能:衣藻 CO 浓缩机制中的一种质膜 CO 通道。

Structure and function of LCI1: a plasma membrane CO channel in the Chlamydomonas CO concentrating mechanism.

机构信息

Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.

Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA.

出版信息

Plant J. 2020 Jun;102(6):1107-1126. doi: 10.1111/tpj.14745. Epub 2020 Apr 18.

Abstract

Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (C ) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active C uptake systems. Fundamental to eukaryotic C uptake systems are C transporters/channels located in membranes of various cell compartments, which together facilitate the movement of C from the environment into the chloroplast, where primary CO assimilation occurs. Two putative plasma membrane C transporters, HLA3 and LCI1, are reportedly involved in active C uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full-length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss-of-function mutant to reveal the C species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO uptake and that LCI1 likely functions as a plasma membrane CO channel, possibly a gated channel.

摘要

微藻和蓝藻大约贡献了全球光合作用碳同化的一半。在水生环境中,CO 的获取受到限制,其浓度可能每天甚至每小时都在变化,这些微生物已经进化出了高效的 CO 浓缩机制(CCM),以积累高浓度的无机碳(C )来维持光合作用。对于真核藻类,利用模式生物莱茵衣藻的分子、遗传和生理研究相结合,揭示了许多 CCM 成分的功能和分子特征,包括活跃的 C 摄取系统。真核生物 C 摄取系统的基础是位于各种细胞区室膜上的 C 转运体/通道,它们共同促进 C 从环境向叶绿体的移动,而初级 CO 同化就发生在叶绿体中。据报道,两个假定的质膜 C 转运体 HLA3 和 LCI1 参与了活跃的 C 摄取。基于先前的研究,HLA3 显然在 HCO 转运中发挥了重要作用,但 LCI1 的功能尚未得到彻底研究,因此仍然有些模糊。在这里,我们报告了全长 LCI1 膜蛋白的晶体结构,以揭示 LCI1 的结构特征,以及在 LCI1 功能丧失突变体中的体内生理研究,以揭示 LCI1 对 C 物种的偏好。总之,这些新的研究表明,LCI1 在活跃的 CO 摄取中起着重要作用,并且 LCI1 可能作为质膜 CO 通道发挥作用,可能是一个门控通道。

相似文献

引用本文的文献

本文引用的文献

2
Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry.利用质谱技术探测膜蛋白-脂质相互作用。
Annu Rev Biochem. 2019 Jun 20;88:85-111. doi: 10.1146/annurev-biochem-013118-111508. Epub 2019 Mar 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验