Moll B A, Steinback K E
Advanced Genetic Sciences, Inc., 6701 San Pablo Avenue, Oakland, California 94608.
Plant Physiol. 1986 Feb;80(2):420-3. doi: 10.1104/pp.80.2.420.
The effects of exposure to low temperature on photosynthesis and protein phosphorylation in chilling-sensitive and cold-tolerant plant species were compared. Chilling temperatures resulted in light-dependent loss of photosynthetic electron transport in chilling-sensitive rice (Oryza sativa L.) but not in cold-tolerant barley (Hordeum vulgare L.). Brief exposure to chilling temperatures (0-15 degrees C, 10 min) did not cause a significant difference in photosynthetic O(2) evolution capacity in vivo between rice and barley. Analysis of in vivo chlorophyll fluorescence in chilling-sensitive rice suggests that low temperatures cause an increased reduction of the plastoquinone pool that could result in photoinhibitory damage to the photosystem II reaction centers. Analysis of (32)P incorporation into thylakoid proteins both in vivo and in vitro demonstrated that chilling temperature inhibited protein phosphorylation in rice, but not in barley. Low temperature (77 K) fluorescence analysis of isolated thylakoid membranes indicated that state I to state II transitions occurred in barley, but not in rice subjected to chilling temperatures. These observations suggest that protein phosphorylation may play an important role in protection against photoinhibition caused by exposure to chilling temperatures.
比较了低温暴露对冷敏感型和耐寒型植物物种光合作用及蛋白质磷酸化的影响。低温导致冷敏感型水稻(Oryza sativa L.)光合电子传递出现光依赖型损失,但耐寒型大麦(Hordeum vulgare L.)则未出现这种情况。短暂暴露于低温(0 - 15摄氏度,10分钟)下,水稻和大麦体内光合氧气释放能力未出现显著差异。对冷敏感型水稻体内叶绿素荧光的分析表明,低温会导致质体醌库还原增加,这可能会对光系统II反应中心造成光抑制损伤。对体内和体外类囊体蛋白中³²P掺入情况的分析表明,低温抑制了水稻中的蛋白质磷酸化,但对大麦没有影响。对分离的类囊体膜进行低温(77K)荧光分析表明,大麦发生了从状态I到状态II的转变,而遭受低温的水稻则未发生。这些观察结果表明,蛋白质磷酸化可能在抵御低温暴露引起的光抑制中发挥重要作用。