Espie G S, Colman B
Department of Biology, York University, Downsview, Ontario, Canada M3J 1P3.
Plant Physiol. 1986 Apr;80(4):863-9. doi: 10.1104/pp.80.4.863.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic (14)C incorporation when CO(2) or HCO(3) (-) serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO(2) or HCO(3) (-)) and experimentally derived time-courses of (14)C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO(2) and HCO(3) (-) transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO(2) or HCO(3) (-) uptake relies upon monitoring changes in the intracellular specific activity (by (14)C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO(2)-HCO(3) (-) interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of (14)C incorporation provides two methods by which any contribution of HCO(3) (-) ions to net photosynthetic carbon uptake can be estimated.
已经建立了一些方程式,这些方程式可以定量预测在稳态光合作用期间,当CO₂或HCO₃⁻作为细胞吸收用于固定的外源无机碳的唯一来源时,光合(¹⁴)C掺入的理论时间进程。理论上(CO₂或HCO₃⁻)的形状与通过实验得出的(¹⁴)C掺入时间进程之间的比较,有助于识别穿过光合细胞质膜的主要无机碳种类,并有助于检测CO₂和HCO₃⁻运输对细胞内无机碳供应的任何综合贡献。区分CO₂或HCO₃⁻吸收的能力依赖于监测当悬浮介质中存在的无机碳处于同位素不平衡状态时(通过¹⁴C固定)细胞内比活性的变化(JT Lehman 1978年,《藻类学杂志》14:33 - 42)。为了进行定量准确的预测,需要细胞内碳酸酐酶或CO₂ - HCO₃⁻相互转化反应的其他一些催化剂的存在。对描述(¹⁴)C掺入速率的方程式的分析提供了两种方法,通过这些方法可以估计HCO₃⁻离子对净光合碳吸收的任何贡献。