Suppr超能文献

集胞藻6803 R(2)的高二氧化碳需求突变体

High CO(2) Requiring Mutant of Anacystis nidulans R(2).

作者信息

Marcus Y, Schwarz R, Friedberg D, Kaplan A

机构信息

Department of Botany, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

出版信息

Plant Physiol. 1986 Oct;82(2):610-2. doi: 10.1104/pp.82.2.610.

Abstract

Some physiological characteristics of a mutant (E(1)) of Anacystis nidulans R(2), incapable of growing at air level of CO(2), are described. E(1) is capable of accumulating inorganic carbon (C(i)) internally as efficiently as the wild type (R(2)). The apparent photosynthetic affinity for C(i) in E(1), however, is some 1000 times lower than that of R(2). The kinetic parameters of ribulose 1,5-bisphosphate carboxylase/oxygenase from E(1) are similar to those observed in R(2). The mutant appears to be defective in its ability to utilize the intracellular C(i) pool for photosynthesis and depends on extracellular supply of Ci in the form of CO(2). The very high apparent photosynthetic K(m) (CO(2)) of the mutant indicate a large diffusion resistance for CO(2). Data obtained here are used to calculate the permeability coefficient for CO(2) between the bulk medium and the carboxylation site of cyanobacteria.

摘要

描述了集胞藻6803 R2的一个突变体(E(1))的一些生理特性,该突变体在空气中的二氧化碳水平下无法生长。E(1)能够像野生型(R2)一样有效地在体内积累无机碳(C(i))。然而,E(1)对C(i)的表观光合亲和力比R(2)低约1000倍。来自E(1)的1,5-二磷酸核酮糖羧化酶/加氧酶的动力学参数与在R(2)中观察到的相似。该突变体似乎在利用细胞内C(i)库进行光合作用的能力方面存在缺陷,并且依赖于以二氧化碳形式的细胞外Ci供应。该突变体非常高的表观光合K(m)(CO(2))表明对二氧化碳有很大的扩散阻力。这里获得的数据用于计算蓝细菌的大量培养基和羧化位点之间二氧化碳的渗透系数。

相似文献

1
High CO(2) Requiring Mutant of Anacystis nidulans R(2).
Plant Physiol. 1986 Oct;82(2):610-2. doi: 10.1104/pp.82.2.610.
7
Utilization of Inorganic Carbon by Ulva lactuca.
Plant Physiol. 1991 Dec;97(4):1439-44. doi: 10.1104/pp.97.4.1439.

引用本文的文献

1
Trajectories for the evolution of bacterial CO-concentrating mechanisms.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2210539119. doi: 10.1073/pnas.2210539119. Epub 2022 Dec 1.
2
New discoveries expand possibilities for carboxysome engineering.
Curr Opin Microbiol. 2021 Jun;61:58-66. doi: 10.1016/j.mib.2021.03.002. Epub 2021 Mar 30.
3
Functional reconstitution of a bacterial CO concentrating mechanism in .
Elife. 2020 Oct 21;9:e59882. doi: 10.7554/eLife.59882.
4
DABs are inorganic carbon pumps found throughout prokaryotic phyla.
Nat Microbiol. 2019 Dec;4(12):2204-2215. doi: 10.1038/s41564-019-0520-8. Epub 2019 Aug 12.
5
Cellular inorganic carbon fluxes in Trichodesmium: a combined approach using measurements and modelling.
J Exp Bot. 2015 Feb;66(3):749-59. doi: 10.1093/jxb/eru427. Epub 2014 Nov 26.
6
Uptake and utilization of inorganic carbon by cyanobacteria.
Photosynth Res. 1988 Apr;16(1-2):141-54. doi: 10.1007/BF00039490.
9
CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin.
Photosynth Res. 2013 Nov;117(1-3):133-46. doi: 10.1007/s11120-013-9860-z. Epub 2013 Jun 4.
10
The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17199-204. doi: 10.1073/pnas.0807043105. Epub 2008 Oct 28.

本文引用的文献

7
Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.
J Bacteriol. 1980 Sep;143(3):1253-9. doi: 10.1128/jb.143.3.1253-1259.1980.
8
Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis.
Arch Biochem Biophys. 1980 Apr 15;201(1):247-54. doi: 10.1016/0003-9861(80)90509-3.
9
Solubility of carbon dioxide in lipid bilayer membranes and organic solvents.
Biochim Biophys Acta. 1980 Mar 13;596(3):352-8. doi: 10.1016/0005-2736(80)90122-4.
10
Purification and properties of unicellular blue-green algae (order Chroococcales).
Bacteriol Rev. 1971 Jun;35(2):171-205. doi: 10.1128/br.35.2.171-205.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验