Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
Elife. 2020 Oct 21;9:e59882. doi: 10.7554/eLife.59882.
Many photosynthetic organisms employ a CO concentrating mechanism (CCM) to increase the rate of CO fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled to grow by fixing CO from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO assimilation in diverse organisms.
许多光合作用生物利用 CO2浓缩机制(CCM)来提高卡尔文循环固定 CO2的速率。CCM 催化了全球约 50%的光合作用,但仍不清楚产生这种复杂适应所需的基因和蛋白质。我们描述了在非天然宿主中构建功能性 CCM 的方法,通过在一株依赖 Rubisco 羧化作用生长的工程菌中表达自养细菌的基因来实现。表达 20 个 CCM 基因使能够从环境空气中固定 CO2并将其转化为生物量,而在环境空气中的生长则取决于 CCM 的组成部分。因此,细菌 CCM 在遗传上是紧凑的,并且易于移植,这也解释了它们在不同细菌中的存在。重建使我们能够通过遗传实验来完善对 CCM 的理解,从而为深入研究和工程改造不同生物体中支持 CO2同化的细胞生物学奠定基础。