Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Department of Chemistry, University of California, Berkeley, CA, USA.
Nat Microbiol. 2019 Dec;4(12):2204-2215. doi: 10.1038/s41564-019-0520-8. Epub 2019 Aug 12.
Bacterial autotrophs often rely on CO concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus. Screening revealed that the CCM comprises at least 17 and probably no more than 25 genes, most of which are encoded in 3 operons. Two of these operons (DAB1 and DAB2) contain a two-gene locus that encodes a domain of unknown function (Pfam: PF10070) and a putative cation transporter (Pfam: PF00361). Physiological and biochemical assays demonstrated that these proteins-which we name DabA and DabB, for DABs accumulate bicarbonate-assemble into a heterodimeric complex, which contains a putative β-carbonic anhydrase-like active site and functions as an energy-coupled inorganic carbon (C) pump. Interestingly, DAB operons are found in a diverse range of bacteria and archaea. We demonstrate that functional DABs are present in the human pathogens Bacillus anthracis and Vibrio cholerae. On the basis of these results, we propose that DABs constitute a class of energized C pumps and play a critical role in the metabolism of C throughout prokaryotic phyla.
细菌自养生物通常依赖于 CO2浓缩机制(CCM)来同化碳。尽管已经鉴定出许多 CCM 蛋白,但对 CCM 成分的系统筛选仍然缺乏。在这里,我们进行了全基因组条形码转座子筛选,以鉴定γ-变形菌硫杆菌(Halothiobacillus neapolitanus)中的必需和 CCM 相关基因。筛选结果表明,CCM 至少包含 17 个基因,并且可能不超过 25 个基因,其中大多数基因编码在 3 个操纵子中。这 3 个操纵子中的 2 个(DAB1 和 DAB2)包含一个包含未知功能域(Pfam:PF10070)和假定阳离子转运蛋白(Pfam:PF00361)的双基因座。生理和生化测定表明,这些被我们命名为 DabA 和 DabB 的蛋白质会积累重碳酸根,它们组装成一个异二聚体复合物,其中包含一个假定的β-碳酸酐酶样活性位点,并作为能量偶联无机碳(C)泵发挥作用。有趣的是,DAB 操纵子存在于多种细菌和古菌中。我们证明功能性 DabA 在人类病原体炭疽芽孢杆菌和霍乱弧菌中存在。基于这些结果,我们提出 DabA 构成了一类能量化 C 泵,在整个原核生物门的 C 代谢中发挥着关键作用。