Suppr超能文献

原核生物聚球藻属RF-1的昼夜节律

Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1.

作者信息

Huang T C, Tu J, Chow T J, Chen T H

机构信息

Institute of Botany, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China.

出版信息

Plant Physiol. 1990 Feb;92(2):531-3. doi: 10.1104/pp.92.2.531.

Abstract

The prokaryotic Synechococcus sp. RF-1 exhibited a nitrogen fixation circadian rhythm with characteristics remarkably similar to the circadian rhythm of eukaryotes. The rhythm had a free-running period of about 24 hours when the length of the preen-trained cycle did not differ too much from 24 hours, and it was insensitive to changes in temperature from 22 degrees C to 33 degrees C. Because the endogenous rhythm of nitrogen fixation was not affected by a phase-shift of its previous cycles, the circadian rhythm in Synechococcus sp. RF-1 was not considered to be controlled simply by a feedback mechanism.

摘要

原核生物聚球藻属(Synechococcus sp.)RF-1呈现出固氮昼夜节律,其特征与真核生物的昼夜节律极为相似。当预训练周期的时长与24小时相差不大时,该节律的自由运行周期约为24小时,并且在22摄氏度至33摄氏度的温度变化下不敏感。由于固氮的内源性节律不受其先前周期相位变化的影响,因此聚球藻属(Synechococcus sp.)RF-1中的昼夜节律不被认为是简单地由反馈机制控制的。

相似文献

1
Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1.
Plant Physiol. 1990 Feb;92(2):531-3. doi: 10.1104/pp.92.2.531.
2
Circadian Rhythm in Amino Acid Uptake by Synechococcus RF-1.
Plant Physiol. 1991 Sep;97(1):55-9. doi: 10.1104/pp.97.1.55.
8
The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942.
Photosynth Res. 2019 Nov;142(2):203-210. doi: 10.1007/s11120-019-00667-0. Epub 2019 Sep 4.
9
Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria.
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5672-6. doi: 10.1073/pnas.90.12.5672.

引用本文的文献

1
The cyanobacterial circadian clock.
NPJ Biol Timing Sleep. 2025;2(1):26. doi: 10.1038/s44323-025-00042-4. Epub 2025 Jun 30.
2
Composition and rhythmic variations in the microbiome of Southwestern Atlantic corals.
Environ Microbiome. 2025 Jun 14;20(1):71. doi: 10.1186/s40793-025-00725-2.
5
Microbial circadian clocks: host-microbe interplay in diel cycles.
BMC Microbiol. 2023 May 9;23(1):124. doi: 10.1186/s12866-023-02839-4.
6
: A model system for expanding the study of cyanobacterial circadian rhythms.
Front Physiol. 2023 Jan 4;13:1085959. doi: 10.3389/fphys.2022.1085959. eCollection 2022.
7
To Die or Not to Die-Regulated Cell Death and Survival in Cyanobacteria.
Microorganisms. 2022 Aug 17;10(8):1657. doi: 10.3390/microorganisms10081657.
8
Principles of rhythmicity emerging from cyanobacteria.
Eur J Neurosci. 2020 Jan;51(1):13-18. doi: 10.1111/ejn.14434. Epub 2019 Jun 17.
9
Exploring phylogeny to find the function of sleep.
Nat Rev Neurosci. 2019 Feb;20(2):109-116. doi: 10.1038/s41583-018-0098-9.
10
Functional Genetic Diversity and Culturability of Petroleum-Degrading Bacteria Isolated From Oil-Contaminated Soils.
Front Microbiol. 2018 Jun 20;9:1332. doi: 10.3389/fmicb.2018.01332. eCollection 2018.

本文引用的文献

1
ON THE MECHANISM OF TEMPERATURE INDEPENDENCE IN A BIOLOGICAL CLOCK.
Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):804-11. doi: 10.1073/pnas.43.9.804.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum.
Biochim Biophys Acta. 1966 Oct 31;127(2):285-94. doi: 10.1016/0304-4165(66)90383-7.
4
Purification and properties of unicellular blue-green algae (order Chroococcales).
Bacteriol Rev. 1971 Jun;35(2):171-205. doi: 10.1128/br.35.2.171-205.1971.
5
Endocytobiotic coordination, intracellular calcium signaling, and the origin of endogenous rhythms.
Ann N Y Acad Sci. 1987;503:476-95. doi: 10.1111/j.1749-6632.1987.tb40631.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验