Qi W, Fong C, Lamport D T
Agrobiological College, Beijing Agricultural University, Beijing, P. R. China, 100094.
Plant Physiol. 1991 Jul;96(3):848-55. doi: 10.1104/pp.96.3.848.
Separation of the wound exudate from Acacia senegal (L.) Willd., "gum arabic," on a preparative Superose-6 column gave two major fractions: a high molecular weight gum arabic glycoprotein (GAGP) containing about 90% carbohydrate and a lower molecular weight heterogenous gum arabic polysaccharide fraction. Hydrogen fluoride-deglycosylation of GAGP gave a large ( approximately 400 residue) hydroxyproline-rich polypeptide backbone (dGAGP). Alkaline hydrolysis of GAGP showed that most of the carbohydrate was attached to the polypeptide backbone as small ( approximately 30 residue) hydroxyproline (Hyp)-polysaccharide substituents. After partial acid hydrolysis of the Hyp-polysaccharide fraction we identified O-galactosylhydroxyproline as the glycopeptide linkage, identical with that of hydroxyproline-rich arabinogalactan-proteins (AGPs). However, unlike the acidic alanine-rich AGPs, GAGP is basic and notably deficient in alanine. Thus, while the GAGP polypeptide backbone more closely resembles that of the Hyp-rich cell wall protein extensin, the GAGP polysaccharide sidechains resemble AGPs. Possibly all three proteins comprise a phylogenetically related extensin superfamily of extended rod-like macromolecules. The "wattle-blossom" model for AGP and gum arabic predicts a few large polysaccharide substituents along the polypeptide backbone of a spheroidal macromolecule. On the contrary, our data imply a rodlike molecule with numerous small polysaccharide substituents (attached to 24% of the Hyp residues), regularly arranged along a highly periodic polypeptide backbone based, hypothetically, on a 10 to 12 residue repetitive peptide motif. Thus, a simple statistical model of the gum arabic glycoprotein predicts a repeating polysaccharide-peptide subunit of about 7 kilodaltons. The small polysaccharide substituents will maximize intramolecular hydrogen bonding if aligned along the long axis of the molecule, forming in effect a twisted hairy rope. Electron micrographs of rotary shadowed GAGP molecules support that prediction and may also explain how such apparently large molecules can exit the cell by endwise reptation through the small pores of the primary cell wall.
将阿拉伯胶树(Acacia senegal (L.) Willd.)的伤口渗出物“阿拉伯树胶”在制备型Superose - 6柱上进行分离,得到两个主要组分:一种高分子量的阿拉伯树胶糖蛋白(GAGP),其碳水化合物含量约为90%,以及一种低分子量的异质阿拉伯树胶多糖组分。GAGP经氟化氢去糖基化后得到一个大的(约400个残基)富含羟脯氨酸的多肽主链(dGAGP)。GAGP的碱性水解表明,大部分碳水化合物以小的(约30个残基)羟脯氨酸(Hyp) - 多糖取代基的形式连接到多肽主链上。对Hyp - 多糖组分进行部分酸水解后,我们确定O - 半乳糖基羟脯氨酸为糖肽连接键,这与富含羟脯氨酸的阿拉伯半乳聚糖蛋白(AGP)的连接键相同。然而,与酸性富含丙氨酸的AGP不同,GAGP呈碱性且丙氨酸明显缺乏。因此,虽然GAGP多肽主链与富含Hyp的细胞壁蛋白伸展蛋白更为相似,但GAGP多糖侧链与AGP相似。这三种蛋白质可能都属于一个在系统发育上相关的伸展蛋白超家族,该超家族由伸展的棒状大分子组成。AGP和阿拉伯树胶的“金合欢花”模型预测,在球形大分子的多肽主链上有一些大的多糖取代基。相反,我们的数据表明是一种棒状分子,带有许多小的多糖取代基(连接到24%的Hyp残基上),这些取代基沿着高度周期性的多肽主链规则排列,假设该主链基于一个10到12个残基的重复肽基序。因此,阿拉伯树胶糖蛋白的一个简单统计模型预测出一个约7千道尔顿的重复多糖 - 肽亚基。如果小的多糖取代基沿分子长轴排列,将使分子内氢键最大化,实际上形成一条扭曲的毛绳。旋转阴影法处理的GAGP分子的电子显微镜照片支持了这一预测,也可能解释了如此大的分子如何通过在初生细胞壁的小孔中进行端向蠕动而离开细胞。