Department of Vegetable Crops, University of California, Davis, California 95616-8631.
Plant Physiol. 1992 Mar;98(3):1057-68. doi: 10.1104/pp.98.3.1057.
Mathematical models were developed to characterize the physiological bases of the responses of tomato (Lycopersicon esculentum Mill. cv T5) seed germination to water potential (psi) and abscisic acid (ABA). Using probit analysis, three parameters were derived that can describe the germination time courses of a seed population at different psi or ABA levels. For the response of seed germination to reduced psi, these parameters are the mean base water potential ( psi(b), MPa), the standard deviation of the base water potential among seeds in the population (sigma(psib), MPa), and the "hydrotime constant" (theta(H), MPa.h). For the response to ABA, they are the log of the mean base ABA concentration ([unk]ABA(b), m), the standard deviation of the base ABA concentration among seeds in the population (sigma(ABA) (b), log[m]), and the "ABA-time constant" (theta(ABA), log[m].h). The values of psi(b) and [unk]ABA(b) provide quantitative estimates of the mean sensitivity of germination rate to psi or ABA, whereas sigma(psi) (b) and sigma(ABA) (b) account for the variation in sensitivity among seeds in the population. The time constants, theta(H) and theta(ABA), indicate the extent to which germination rate will be affected by a given change in psi or ABA. Using only these parameters, germination time courses can be predicted with reasonable accuracy at any medium psi according to the equation probit(g) = [psi - (theta(H)/t(g)) - psi(b)]/sigma(psib), or at any ABA concentration according to the equation probit(g) = [log[ABA] - (theta(ABA)/t(g)) - log[[unk]ABA(b)]]/sigma(ABA) (b), where t(g) is the time to radicle emergence of percentage g, and ABA is the ABA concentration (m) in the incubation solution. In the presence of both ABA and reduced psi, the same parameters can be used to predict seed germination time courses based upon strictly additive effects of psi and ABA in delaying the time of radicle emergence. Further analysis indicates that ABA and psi can act both independently and interactively to influence physiological processes preparatory for radicle growth, such as the accumulation of osmotic solutes in the embryo. The models provide quantitative values for the sensitivity of germination to ABA or psi, allow evaluation of independent and interactive effects of the two factors, and have implications for understanding how ABA and psi may regulate growth and development.
建立了数学模型来描述番茄(Lycopersicon esculentum Mill. cv T5)种子萌发对水势(psi)和脱落酸(ABA)的生理基础的响应。使用概率分析,得出了三个参数,这些参数可以描述在不同 psi 或 ABA 水平下种子群体的萌发时间过程。对于种子萌发对 psi 降低的响应,这些参数是群体中种子的平均基础水势(psi(b),MPa)、群体中种子基础水势的标准差(sigma(psib),MPa)和“水时常数”(theta(H),MPa.h)。对于 ABA 的响应,它们是平均基础 ABA 浓度的对数([unk]ABA(b),m)、群体中种子基础 ABA 浓度的标准差(sigma(ABA)(b),log[m])和“ABA 时常数”(theta(ABA),log[m].h)。psi(b)和[unk]ABA(b)的值提供了萌发率对 psi 或 ABA 的平均敏感性的定量估计,而 sigma(psi)(b)和 sigma(ABA)(b)则说明了群体中种子敏感性的变化。时常数 theta(H)和 theta(ABA)表示萌发率将受到 psi 或 ABA 给定变化的影响程度。仅使用这些参数,可以根据方程 probit(g) = [psi - (theta(H)/t(g)) - psi(b)]/sigma(psib),在任何中等 psi 下,或者根据方程 probit(g) = [log[ABA] - (theta(ABA)/t(g)) - log[[unk]ABA(b)]]/sigma(ABA)(b),在任何 ABA 浓度下,以合理的精度预测萌发时间过程,其中 t(g)是萌发率为 g 的根芽出现的时间,ABA 是孵育溶液中的 ABA 浓度(m)。在存在 ABA 和 psi 降低的情况下,相同的参数可用于基于 psi 和 ABA 在延迟根芽出现时间方面的严格相加效应来预测种子萌发时间过程。进一步的分析表明,ABA 和 psi 可以独立地和交互地影响为根芽生长做准备的生理过程,例如在胚胎中积累渗透溶质。这些模型为萌发对 ABA 或 psi 的敏感性提供了定量值,允许评估两个因素的独立和交互作用,并对理解 ABA 和 psi 如何调节生长和发育具有启示意义。