Suppr超能文献

数量性状和质量性状中基因型与表达相互作用的贝叶斯图谱分析。

Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits.

作者信息

Hoti F, Sillanpää M J

机构信息

Department of Mathematics and Statistics, Rolf Nevanlinna Institute, University of Helsinki, FIN-00014 Helsinki, Finland.

出版信息

Heredity (Edinb). 2006 Jul;97(1):4-18. doi: 10.1038/sj.hdy.6800817. Epub 2006 May 3.

Abstract

A novel Bayesian gene mapping method, which can simultaneously utilize both molecular marker and gene expression data, is introduced. The approach enables a quantitative or qualitative phenotype to be expressed as a linear combination of the marker genotypes, gene expression levels, and possible genotype x gene expression interactions. The interaction data, given as marker-gene pairs, contains possible in cis and in trans effects obtained from earlier allelic expression studies, genetical genomics studies, biological hypotheses, or known pathways. The method is presented for an inbred line cross design and can be easily generalized to handle other types of populations and designs. The model selection is based on the use of effect-specific variance components combined with Jeffreys' non-informative prior--the method operates by adaptively shrinking marker, expression, and interaction effects toward zero so that non-negligible effects are expected to occur only at very few positions. The estimation of the model parameters and the handling of missing genotype or expression data is performed via Markov chain Monte Carlo sampling. The potential of the method including heritability estimation is presented using simulated examples and novel summary statistics. The method is also applied to a real yeast data set with known pathways.

摘要

介绍了一种新型贝叶斯基因定位方法,该方法能够同时利用分子标记和基因表达数据。该方法能将定量或定性表型表示为标记基因型、基因表达水平以及可能的基因型×基因表达相互作用的线性组合。以标记-基因对形式给出的相互作用数据包含了从早期等位基因表达研究、遗传基因组学研究、生物学假设或已知通路中获得的可能的顺式和反式效应。该方法是针对近交系杂交设计提出的,并且可以很容易地推广到处理其他类型的群体和设计。模型选择基于使用效应特异性方差分量并结合杰弗里斯非信息先验——该方法通过将标记、表达和相互作用效应自适应地向零收缩来运行,以便预期只有在极少数位置才会出现不可忽略的效应。模型参数的估计以及缺失基因型或表达数据的处理是通过马尔可夫链蒙特卡罗采样进行的。使用模拟示例和新颖的汇总统计数据展示了该方法的潜力,包括遗传力估计。该方法还应用于具有已知通路的真实酵母数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验