Suppr超能文献

无向图模型中的贝叶斯边缘回归用于刻画癌症患者间的异质性

Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer.

作者信息

Wang Zeya, Kaseb Ahmed O, Amin Hesham M, Hassan Manal M, Wang Wenyi, Morris Jeffrey S

机构信息

Department of Statistics, Rice University; Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Veerabhadran Baladandayuthapani; Department of Biostatistics, University of Michigan.

Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center.

出版信息

J Am Stat Assoc. 2022;117(538):533-546. doi: 10.1080/01621459.2021.2000866. Epub 2022 Jan 5.

Abstract

It is well-established that interpatient heterogeneity in cancer may significantly affect genomic data analyses and in particular, network topologies. Most existing graphical model methods estimate a single population-level graph for genomic or proteomic network. In many investigations, these networks depend on patient-specific indicators that characterize the heterogeneity of individual networks across subjects with respect to subject-level covariates. Examples include assessments of how the network varies with patient-specific prognostic scores or comparisons of tumor and normal graphs while accounting for tumor purity as a continuous predictor. In this paper, we propose a novel edge regression model for undirected graphs, which estimates conditional dependencies as a function of subject-level covariates. We evaluate our model performance through simulation studies focused on comparing tumor and normal graphs while adjusting for tumor purity. In application to a dataset of proteomic measurements on plasma samples from patients with hepatocellular carcinoma (HCC), we ascertain how blood protein networks vary with disease severity, as measured by HepatoScore, a novel biomarker signature measuring disease severity. Our case study shows that the network connectivity increases with HepatoScore and a set of hub genes as well as important gene connections are identified under different HepatoScore, which may provide important biological insights to the development of precision therapies for HCC.

摘要

癌症患者间的异质性会显著影响基因组数据分析,尤其是网络拓扑结构,这一点已得到充分证实。大多数现有的图形模型方法会为基因组或蛋白质组网络估计一个单一的群体水平图。在许多研究中,这些网络依赖于患者特定指标,这些指标表征了个体网络在受试者层面协变量方面的异质性。例如,评估网络如何随患者特定的预后评分变化,或者在将肿瘤纯度作为连续预测变量的情况下比较肿瘤图和正常图。在本文中,我们提出了一种用于无向图的新型边回归模型,该模型将条件依赖性估计为受试者层面协变量的函数。我们通过模拟研究来评估模型性能,这些研究侧重于在调整肿瘤纯度的同时比较肿瘤图和正常图。在应用于肝细胞癌(HCC)患者血浆样本蛋白质组测量数据集时,我们确定血液蛋白质网络如何随疾病严重程度变化,疾病严重程度由HepatoScore衡量,HepatoScore是一种测量疾病严重程度的新型生物标志物特征。我们的案例研究表明,网络连通性随HepatoScore增加,并且在不同的HepatoScore下识别出了一组枢纽基因以及重要的基因连接,这可能为HCC精准治疗的发展提供重要的生物学见解。

相似文献

1
Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer.
J Am Stat Assoc. 2022;117(538):533-546. doi: 10.1080/01621459.2021.2000866. Epub 2022 Jan 5.
2
Bayesian Graphical Regression.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
4
Identifying disease-associated biomarker network features through conditional graphical model.
Biometrics. 2020 Sep;76(3):995-1006. doi: 10.1111/biom.13201. Epub 2019 Dec 27.
5
Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question.
IEEE Trans Netw Sci Eng. 2021 Oct-Dec;8(4):3019-3033. doi: 10.1109/tnse.2021.3086508. Epub 2021 Jun 4.
6
Bayesian Structure Learning in Multi-layered Genomic Networks.
J Am Stat Assoc. 2021;116(534):605-618. doi: 10.1080/01621459.2020.1775611. Epub 2020 Jul 24.
8
Conditional Functional Graphical Models.
J Am Stat Assoc. 2023;118(541):257-271. doi: 10.1080/01621459.2021.1924178. Epub 2021 Jun 22.
9
On network deconvolution for undirected graphs.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae112.

引用本文的文献

1
Learning to estimate sample-specific transcriptional networks for 7,000 tumors.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2411930122. doi: 10.1073/pnas.2411930122. Epub 2025 May 23.
2
Connectivity Regression.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
3
A probabilistic modeling framework for genomic networks incorporating sample heterogeneity.
Cell Rep Methods. 2025 Feb 24;5(2):100984. doi: 10.1016/j.crmeth.2025.100984. Epub 2025 Feb 14.
4
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
5
Complex Disease Individual Molecular Characterization Using Infinite Sparse Graphical Independent Component Analysis.
Cancer Inform. 2022 Jul 15;21:11769351221105776. doi: 10.1177/11769351221105776. eCollection 2022.

本文引用的文献

1
Bayesian Graphical Regression.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
2
Bayesian Structure Learning in Multi-layered Genomic Networks.
J Am Stat Assoc. 2021;116(534):605-618. doi: 10.1080/01621459.2020.1775611. Epub 2020 Jul 24.
3
5
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration.
iScience. 2018 Nov 30;9:451-460. doi: 10.1016/j.isci.2018.10.028. Epub 2018 Nov 2.
6
Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions.
Biometrika. 2015 Jun;102(2):247-266. doi: 10.1093/biomet/asu074. Epub 2015 Mar 2.
7
Joint Estimation of Precision Matrices in Heterogeneous Populations.
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.
8
Gene Network Reconstruction using Global-Local Shrinkage Priors.
Ann Appl Stat. 2017 Mar;11(1):41-68. doi: 10.1214/16-aoas990.
9
Joint Estimation of Multiple High-dimensional Precision Matrices.
Stat Sin. 2016 Apr;26(2):445-464. doi: 10.5705/ss.2014.256.
10
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验