Suppr超能文献

贝叶斯差异分析基因调控网络利用遗传扰动。

Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.

机构信息

College of Computer Science and Technology, Jilin University, Changchun, 130012, China.

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.

出版信息

BMC Bioinformatics. 2020 Jan 9;21(1):12. doi: 10.1186/s12859-019-3314-3.

Abstract

BACKGROUND

Gene regulatory networks (GRNs) can be inferred from both gene expression data and genetic perturbations. Under different conditions, the gene data of the same gene set may be different from each other, which results in different GRNs. Detecting structural difference between GRNs under different conditions is of great significance for understanding gene functions and biological mechanisms.

RESULTS

In this paper, we propose a Bayesian Fused algorithm to jointly infer differential structures of GRNs under two different conditions. The algorithm is developed for GRNs modeled with structural equation models (SEMs), which makes it possible to incorporate genetic perturbations into models to improve the inference accuracy, so we name it BFDSEM. Different from the naive approaches that separately infer pair-wise GRNs and identify the difference from the inferred GRNs, we first re-parameterize the two SEMs to form an integrated model that takes full advantage of the two groups of gene data, and then solve the re-parameterized model by developing a novel Bayesian fused prior following the criterion that separate GRNs and differential GRN are both sparse.

CONCLUSIONS

Computer simulations are run on synthetic data to compare BFDSEM to two state-of-the-art joint inference algorithms: FSSEM and ReDNet. The results demonstrate that the performance of BFDSEM is comparable to FSSEM, and is generally better than ReDNet. The BFDSEM algorithm is also applied to a real data set of lung cancer and adjacent normal tissues, the yielded normal GRN and differential GRN are consistent with the reported results in previous literatures. An open-source program implementing BFDSEM is freely available in Additional file 1.

摘要

背景

基因调控网络(GRNs)可以从基因表达数据和遗传扰动中推断出来。在不同的条件下,同一基因集的基因数据可能彼此不同,从而导致不同的 GRNs。检测不同条件下 GRN 的结构差异对于理解基因功能和生物机制具有重要意义。

结果

在本文中,我们提出了一种贝叶斯融合算法来联合推断两种不同条件下的 GRN 差异结构。该算法是针对结构方程模型(SEMs)建模的 GRNs 开发的,这使得可以将遗传扰动纳入模型中以提高推断准确性,因此我们将其命名为 BFDSEM。与分别推断成对 GRN 并从推断的 GRN 中识别差异的简单方法不同,我们首先重新参数化两个 SEM 以形成一个集成模型,充分利用两组基因数据,然后通过开发一种新的贝叶斯融合先验来解决重新参数化的模型,该先验遵循单独的 GRN 和差异 GRN 都是稀疏的准则。

结论

在合成数据上进行计算机模拟,将 BFDSEM 与两种最先进的联合推断算法 FSSEM 和 ReDNet 进行比较。结果表明,BFDSEM 的性能可与 FSSEM 相媲美,并且通常优于 ReDNet。BFDSEM 算法还应用于肺癌和相邻正常组织的真实数据集,生成的正常 GRN 和差异 GRN 与先前文献中的报道结果一致。实现 BFDSEM 的开源程序可在附加文件 1 中免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9796/6953167/e633d9859acd/12859_2019_3314_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验