Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
School of Biological Sciences, University of Utah, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15651-15660. doi: 10.1073/pnas.1902521116. Epub 2019 Jul 17.
Motile cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.
游动细胞使用化学感受器信号阵列以极高的精度跟踪化学梯度。化学感受器分子细胞质发夹尖端的高度保守残基促进基于三聚体的信号复合物的组装,并调节其 CheA 激酶伴侣的活性。为了探索丝氨酸受体 Tsr 的发夹尖端输出状态,我们描述了在盐桥残基对 E385-R388 处进行氨基酸替换的信号后果。所有突变受体都组装了三聚体和信号复合物,但大多数在软琼脂测定中不能支持丝氨酸趋化性。在任一位点进行小侧链替换会产生 OFF 或 ON 移位输出,以野生型方式响应丝氨酸刺激,这表明这些受体与野生型一样,作为二态信号装置运作。较小的脂肪族或芳香族侧链会导致较慢或部分激酶控制反应,事实证明这取决于促进阵列协同作用的核心信号单元之间的连接。在缺乏两个关键衔接激酶接触点之一的突变体(界面 2)中,那些突变受体表现出更多的野生型行为。最后,带有带电荷氨基酸替换的突变受体组装的信号复合物被锁定在激酶开启(E385K|R)或激酶关闭(R388D|E)输出。这些具有更异常信号特性的突变受体的发夹尖端可能具有非天然结构或动态行为。我们的结果表明,化学感受器刺激物和适应性修饰会影响核心信号单元之间的协作连接。这种阵列重塑过程可能涉及 CheW 和 CheA.P5 组成受体核心信号复合物的核心信号单元之间界面 1 和 2 相互作用的相对强度的活性依赖性变化。