Feeney Debbie S, Crawford John W, Daniell Tim, Hallett Paul D, Nunan Naoise, Ritz Karl, Rivers Mark, Young Iain M
Scottish Informatics Mathematics Biology and Statistics (SIMBIOS) Centre, University of Abertay, Bell Street, Dundee, DD1 1HG, UK.
Microb Ecol. 2006 Jul;52(1):151-8. doi: 10.1007/s00248-006-9062-8. Epub 2006 May 6.
Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.e., spatial correlation) of the soil pores. Our results indicate that biota act to significantly alter their habitat toward a more porous, ordered, and aggregated structure that has important consequences for functional properties, including transport processes. These observations support the hypothesis that the soil-plant-microbe complex is self-organized.
土壤是地球上生物多样性最丰富的储存库,土壤生态系统的功能维持着陆地生物圈的其他部分。这种功能源于生物和物理过程之间的复杂相互作用,而这些过程受到土壤物理结构的强烈调节。通过结合使用生化和生物物理指标以及同步加速器显微断层扫描技术,我们发现土壤微生物和植物根系通过改变土壤孔隙的孔隙率和聚集特性(即空间相关性)来微观构建它们的栖息地。我们的结果表明,生物群体会显著改变其栖息地,使其朝向更具孔隙性、有序性和聚集性的结构,这对包括传输过程在内的功能特性具有重要影响。这些观察结果支持了土壤 - 植物 - 微生物复合体是自组织的这一假设。