Suppr超能文献

微生物多样性影响土壤-微生物系统的自组织,从而影响其功能。

Microbial diversity affects self-organization of the soil-microbe system with consequences for function.

机构信息

Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney, New South Wales 2006, Australia.

出版信息

J R Soc Interface. 2012 Jun 7;9(71):1302-10. doi: 10.1098/rsif.2011.0679. Epub 2011 Dec 7.

Abstract

Soils are complex ecosystems and the pore-scale physical structure regulates key processes that support terrestrial life. These include maintaining an appropriate mixture of air and water in soil, nutrient cycling and carbon sequestration. There is evidence that this structure is not random, although the organizing mechanism is not known. Using X-ray microtomography and controlled microcosms, we provide evidence that organization of pore-scale structure arises spontaneously out of the interaction between microbial activity, particle aggregation and resource flows in soil. A simple computational model shows that these interactions give rise to self-organization involving both physical particles and microbes that gives soil unique material properties. The consequence of self-organization for the functioning of soil is determined using lattice Boltzmann simulation of fluid flow through the observed structures, and predicts that the resultant micro-structural changes can significantly increase hydraulic conductivity. Manipulation of the diversity of the microbial community reveals a link between the measured change in micro-porosity and the ratio of fungal to bacterial biomass. We suggest that this behaviour may play an important role in the way that soil responds to management and climatic change, but that this capacity for self-organization has limits.

摘要

土壤是复杂的生态系统,其孔隙尺度的物理结构调节着支持陆地生命的关键过程。这些过程包括维持土壤中空气和水的适当混合、养分循环和碳固存。有证据表明,尽管其组织机制尚不清楚,但这种结构并非随机的。本研究使用 X 射线微断层扫描和受控微生境,提供了证据表明,孔隙尺度结构的组织自发地源于微生物活动、颗粒聚集和土壤中资源流动之间的相互作用。一个简单的计算模型表明,这些相互作用导致了涉及物理颗粒和微生物的自组织,从而赋予土壤独特的材料特性。通过对观察到的结构进行格子玻尔兹曼模拟来确定自组织对土壤功能的影响,并预测由此产生的微观结构变化可显著增加水力传导率。对微生物群落多样性的操纵揭示了测量的微孔率变化与真菌与细菌生物量之比之间的联系。我们认为,这种行为可能在土壤对管理和气候变化的响应方式中发挥重要作用,但这种自组织能力是有限的。

相似文献

1
Microbial diversity affects self-organization of the soil-microbe system with consequences for function.
J R Soc Interface. 2012 Jun 7;9(71):1302-10. doi: 10.1098/rsif.2011.0679. Epub 2011 Dec 7.
2
Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.
Ecol Appl. 2017 Jul;27(5):1435-1450. doi: 10.1002/eap.1534. Epub 2017 May 17.
3
Three-dimensional microorganization of the soil-root-microbe system.
Microb Ecol. 2006 Jul;52(1):151-8. doi: 10.1007/s00248-006-9062-8. Epub 2006 May 6.
4
Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling.
mSystems. 2021 Mar 23;6(2):e01052-20. doi: 10.1128/mSystems.01052-20.
5
Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14251-6. doi: 10.1073/pnas.0914281107. Epub 2010 Jul 27.
6
Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
Biol Rev Camb Philos Soc. 2006 Feb;81(1):1-31. doi: 10.1017/S1464793105006846.
7
Historical Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to Drying-Wetting Cycles.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02251-18. Print 2019 Apr 15.
8
Microhabitat accessibility determines peptide substrate degradation by soil microbial community.
Microbiol Spectr. 2025 Jan 7;13(1):e0189823. doi: 10.1128/spectrum.01898-23. Epub 2024 Dec 10.
9
Soil microbes: a natural solution for mitigating the impact of climate change.
Environ Monit Assess. 2023 Nov 9;195(12):1436. doi: 10.1007/s10661-023-11988-y.

引用本文的文献

1
Fungal-mediated soil aggregation as a mechanism for carbon stabilization.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf074.
2
Aboveground and belowground biodiversity have complementary effects on ecosystem functions across global grasslands.
PLoS Biol. 2024 Aug 14;22(8):e3002736. doi: 10.1371/journal.pbio.3002736. eCollection 2024 Aug.
3
Composition and metabolism of microbial communities in soil pores.
Nat Commun. 2024 Apr 27;15(1):3578. doi: 10.1038/s41467-024-47755-x.
4
Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments.
ACS Earth Space Chem. 2023 Aug 23;7(9):1592-1609. doi: 10.1021/acsearthspacechem.3c00032. eCollection 2023 Sep 21.
6
Ecological firewalls for synthetic biology.
iScience. 2022 Jun 23;25(7):104658. doi: 10.1016/j.isci.2022.104658. eCollection 2022 Jul 15.
7
Limited Impacts of Cover Cropping on Soil N-Cycling Microbial Communities of Long-Term Corn Monocultures.
Front Microbiol. 2022 Jun 10;13:926592. doi: 10.3389/fmicb.2022.926592. eCollection 2022.
8
Soil Microbial Indicators within Rotations and Tillage Systems.
Microorganisms. 2021 Jun 8;9(6):1244. doi: 10.3390/microorganisms9061244.
9
Microbial Community Characteristics Largely Unaffected by X-Ray Computed Tomography of Sediment Cores.
Front Microbiol. 2021 Apr 12;12:584676. doi: 10.3389/fmicb.2021.584676. eCollection 2021.
10
The effects of long-term fertilizations on soil hydraulic properties vary with scales.
J Hydrol (Amst). 2021 Feb;593:125890. doi: 10.1016/j.jhydrol.2020.125890.

本文引用的文献

1
Soil microbial communities and restoration ecology: facilitators or followers?
Science. 2009 Jul 31;325(5940):573-4. doi: 10.1126/science.1172975.
2
Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities.
Appl Microbiol Biotechnol. 2008 Sep;80(3):365-80. doi: 10.1007/s00253-008-1565-4. Epub 2008 Jul 22.
3
Environmental regulation in a network of simulated microbial ecosystems.
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10432-7. doi: 10.1073/pnas.0800244105. Epub 2008 Jul 22.
4
Visualization, modelling and prediction in soil microbiology.
Nat Rev Microbiol. 2007 Sep;5(9):689-99. doi: 10.1038/nrmicro1714.
5
Multiplex-terminal restriction fragment length polymorphism.
Nat Protoc. 2006;1(5):2428-33. doi: 10.1038/nprot.2006.392.
7
Three-dimensional microorganization of the soil-root-microbe system.
Microb Ecol. 2006 Jul;52(1):151-8. doi: 10.1007/s00248-006-9062-8. Epub 2006 May 6.
8
Interactions and self-organization in the soil-microbe complex.
Science. 2004 Jun 11;304(5677):1634-7. doi: 10.1126/science.1097394.
9
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验