Suppr超能文献

使用神经刺激器进行外周或神经丛神经阻滞。

Using the nerve stimulator for peripheral or plexus nerve blocks.

作者信息

Urmey W F

机构信息

Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY 70021, USA.

出版信息

Minerva Anestesiol. 2006 Jun;72(6):467-71.

Abstract

Conventional methodology for nerve location utilizes anatomical landmarks followed by invasive exploration with a needle to a suitable endpoint. An appropriate endpoint can be either anatomical in nature (e.g. transaterial technique) or functional (paresthesia or motor response to electrical stimulation). Ability to electrically stimulate a peripheral nerve or plexus depends upon many variables, including; 1) conductive area at the electrode, 2) electrical impedance, 3) electrode-to-nerve distance, 4) current flow (amperage), and 5) pulse duration. Electrode conductive area follows the equation R = rhoL/A, where R = electrical resistance, p = tissue resistivity, L = electrode-to-nerve distance, and A = electrode conductive area. Therefore resistance varies to the inverse of the electrode's conductive area. Tissue electrical impedance varies as a function of the tissue composition. In general, tissues with higher lipid content have higher impedances. Modern electrical nerve stimulators are designed to keep current constant, in spite of varying impedance. The electrode-to-nerve distance has the most influence on the ability to elicit a motor response to electrical stimulation. This is governed by Coulomb's law: E = K(Q/r2) where E = required stimulating charge, K= constant, Q = minimal required stimulating current, and r = electrode-to-nerve distance. Therefore, ability to stimulate the nerve at low amperage (e.g. < 0.5 mA), indicates an extremely close position to the nerve. Similarly, increasing current flow (amperage) increases the ability to stimulate the nerve at a distance. Increasing pulse duration increases the flow of electrons during a current pulse at any given amperage. Therefore, reducing pulse duration to very short times (e.g. 0.1 or 0.05 ms) diminishes current dispersion, requiring the needle tip to be extremely close to the nerve to elicit a motor response. The above parameters can be varied optimally to enhance successful nerve location and subsequent blockade. Unlike imaging modalities such as ultrasonography, electrical nerve stimulation depends upon nerve conduction. Similarly, percutaneous electrode guidance (PEG) makes use of the above variables to allow prelocation of the nerve by transcutaneous stimulation.

摘要

传统的神经定位方法是利用解剖标志,然后用针进行侵入性探查直至合适的终点。合适的终点可以是解剖学上的(如经动脉技术)或功能性的(感觉异常或对电刺激的运动反应)。对外周神经或神经丛进行电刺激的能力取决于许多变量,包括:1)电极处的导电面积;2)电阻抗;3)电极与神经的距离;4)电流(安培数);5)脉冲持续时间。电极导电面积符合公式R = ρL/A,其中R = 电阻,ρ = 组织电阻率,L = 电极与神经的距离,A = 电极导电面积。因此,电阻与电极导电面积成反比。组织电阻抗随组织成分而变化。一般来说,脂质含量较高的组织具有较高的阻抗。现代电神经刺激器设计为即使阻抗变化也能保持电流恒定。电极与神经的距离对引发电刺激运动反应的能力影响最大。这由库仑定律决定:E = K(Q/r²),其中E = 所需刺激电荷,K = 常数,Q = 所需最小刺激电流,r = 电极与神经的距离。因此,在低电流(如<0.5 mA)下刺激神经的能力表明电极与神经的位置极其接近。同样,增加电流(安培数)会增加在一定距离刺激神经的能力。增加脉冲持续时间会在任何给定电流下增加电流脉冲期间的电子流量。因此,将脉冲持续时间缩短至非常短的时间(如0.1或0.05 ms)会减少电流扩散,这就要求针尖极其靠近神经才能引发运动反应。上述参数可以进行最佳调整,以提高神经定位和后续阻滞的成功率。与超声等成像方式不同,电神经刺激依赖于神经传导。同样,经皮电极引导(PEG)利用上述变量,通过经皮刺激实现神经的预先定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验