Suppr超能文献

不同类型自举法的选择指南。

Guidelines for selecting among different types of bootstraps.

作者信息

Baser Onur, Crown William H, Pollicino Christine

机构信息

Outcomes Research and Econometrics, Thomson-Medstat Group Inc, Ann Arbor, MI, USA.

出版信息

Curr Med Res Opin. 2006 Apr;22(4):799-808. doi: 10.1185/030079906X100230.

Abstract

BACKGROUND

The bootstrap has become very popular in health economics. Its success lies in the ease of estimating sampling distribution, standard error and confidence intervals with few or no assumptions about the distribution of the underlying population.

OBJECTIVE

The purpose of this paper is three-fold: (1) to provide an overview of four common bootstrap techniques for readers who have little or no statistical background; (2) to suggest a guideline for selecting the most applicable bootstrap technique for your data; and (3) to connect guidelines with a real world example, to illustrate how different bootstraps behave in one model, or in different models.

RESULTS

The assumptions of homoscedasticity and normality are key to selecting the best bootstrapping technique. These assumptions should be tested before applying any bootstrapping technique. If homoscedasticity and normality hold, then parametric bootstrapping is consistent and efficient. Paired and wild bootstrapping are consistent under heteroscedasticity and non-normality assumptions.

CONCLUSION

Selecting the correct type of bootstrapping is crucial for arriving at efficient estimators. Our example illustrates that if we selected an inconsistent bootstrapping technique, results could be misleading. An insignificant effect of controller treatment on total health expenditures among asthma patients would have been found significant and negative by an improperly chosen bootstrapping technique, regardless of the type of model chosen.

摘要

背景

自助法在卫生经济学中已变得非常流行。其成功之处在于,在对基础总体分布几乎不做或不做任何假设的情况下,易于估计抽样分布、标准误差和置信区间。

目的

本文的目的有三个方面:(1)为几乎没有或没有统计学背景的读者提供四种常见自助法技术的概述;(2)为为您的数据选择最适用的自助法技术提供指导方针;(3)将指导方针与一个实际例子联系起来,以说明不同的自助法在一个模型或不同模型中的表现。

结果

同方差性和正态性假设是选择最佳自助法技术的关键。在应用任何自助法技术之前,都应检验这些假设。如果同方差性和正态性成立,那么参数自助法是一致且有效的。配对自助法和野生自助法在异方差性和非正态性假设下是一致的。

结论

选择正确类型的自助法对于获得有效的估计量至关重要。我们的例子表明,如果我们选择了一种不一致的自助法技术,结果可能会产生误导。无论选择何种模型类型,对于哮喘患者,控制治疗对总医疗支出的无显著影响,通过不当选择的自助法技术可能会被发现具有显著的负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验