Department of Human Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy.
Biochem Med (Zagreb). 2019 Feb 15;29(1):010101. doi: 10.11613/BM.2019.010101. Epub 2018 Dec 15.
Quantiles and percentiles represent useful statistical tools for describing the distribution of results and deriving reference intervals and performance specification in laboratory medicine. They are commonly intended as the sample estimate of a population parameter and therefore they need to be presented with a confidence interval (CI). In this work we discuss three methods to estimate CI on quantiles and percentiles using parametric, nonparametric and resampling (bootstrap) approaches. The result of our numerical simulations is that parametric methods are always more accurate regardless of sample size when the procedure is appropriate for the distribution of results for both extreme (2.5 and 97.5) and central (25, 50 and 75) percentiles and corresponding quantiles. We also show that both nonparametric and bootstrap methods suit well the CI of central percentiles that are used to derive performance specifications through quality indicators of laboratory processes whose underlying distribution is unknown.
分位数和百分位数是描述结果分布并在医学实验室中得出参考区间和性能规格的有用统计工具。它们通常被视为总体参数的样本估计,因此需要给出置信区间(CI)。在这项工作中,我们讨论了使用参数、非参数和重采样(自举)方法估计分位数和百分位数的 CI 的三种方法。我们的数值模拟结果表明,无论样本量大小如何,只要参数方法适用于结果分布,对于极端(2.5 和 97.5)和中心(25、50 和 75)百分位数以及相应的分位数,它始终更准确。我们还表明,非参数和自举方法都非常适合用于推导通过实验室过程质量指标得出的性能规格的中心百分位数的 CI,而这些质量指标的基础分布是未知的。