Suppr超能文献

具有时间相依协变量的基线风险函数和协变量效应的非参数估计。

Non-parametric estimation for baseline hazards function and covariate effects with time-dependent covariates.

作者信息

Gao Feng, Manatunga Amita K, Chen Shande

机构信息

Division of Biostatistics, Washington University School of Medicine, Campus Box 8067, 660 S. Euclid Ave., St Louis, MO 63110, USA.

出版信息

Stat Med. 2007 Feb 20;26(4):857-68. doi: 10.1002/sim.2574.

Abstract

Often in many biomedical and epidemiologic studies, estimating hazards function is of interest. The Breslow's estimator is commonly used for estimating the integrated baseline hazard, but this estimator requires the functional form of covariate effects to be correctly specified. It is generally difficult to identify the true functional form of covariate effects in the presence of time-dependent covariates. To provide a complementary method to the traditional proportional hazard model, we propose a tree-type method which enables simultaneously estimating both baseline hazards function and the effects of time-dependent covariates. Our interest will be focused on exploring the potential data structures rather than formal hypothesis testing. The proposed method approximates the baseline hazards and covariate effects with step-functions. The jump points in time and in covariate space are searched via an algorithm based on the improvement of the full log-likelihood function. In contrast to most other estimating methods, the proposed method estimates the hazards function rather than integrated hazards. The method is applied to model the risk of withdrawal in a clinical trial that evaluates the anti-depression treatment in preventing the development of clinical depression. Finally, the performance of the method is evaluated by several simulation studies.

摘要

在许多生物医学和流行病学研究中,估计风险函数常常是研究的重点。Breslow估计量通常用于估计累积基线风险,但该估计量要求协变量效应的函数形式被正确设定。在存在随时间变化的协变量的情况下,通常很难确定协变量效应的真实函数形式。为了提供一种补充传统比例风险模型的方法,我们提出了一种树型方法,该方法能够同时估计基线风险函数和随时间变化的协变量的效应。我们的兴趣将集中在探索潜在的数据结构上,而不是进行形式上的假设检验。所提出的方法用阶梯函数来近似基线风险和协变量效应。通过基于全对数似然函数改进的算法来搜索时间和协变量空间中的跳跃点。与大多数其他估计方法不同,所提出的方法估计的是风险函数而不是累积风险。该方法被应用于一个评估抗抑郁治疗预防临床抑郁症发生的临床试验中,以对退出风险进行建模。最后,通过几个模拟研究来评估该方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验