Suppr超能文献

使用迭代上下文像素分类法对胸部X光片中的后肋骨进行分割。

Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification.

作者信息

Loog Marco, van Ginneken Bram

机构信息

Image Sciences Institute, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.

出版信息

IEEE Trans Med Imaging. 2006 May;25(5):602-11. doi: 10.1109/TMI.2006.872747.

Abstract

The task of segmenting the posterior ribs within the lung fields of standard posteroanterior chest radiographs is considered. To this end, an iterative, pixel-based, supervised, statistical classification method is used, which is called iterated contextual pixel classification (ICPC). Starting from an initial rib segmentation obtained from pixel classification, ICPC updates it by reclassifying every pixel, based on the original features and, additionally, class label information of pixels in the neighborhood of the pixel to be reclassified. The method is evaluated on 30 radiographs taken from the JSRT (Japanese Society of Radiological Technology) database. All posterior ribs within the lung fields in these images have been traced manually by two observers. The first observer's segmentations are set as the gold standard; ICPC is trained using these segmentations. In a sixfold cross-validation experiment, ICPC achieves a classification accuracy of 0.86 +/- 0.06, as compared to 0.94 +/- 0.02 for the second human observer.

摘要

考虑在标准后前位胸部X光片的肺野内分割后肋的任务。为此,使用了一种基于像素的迭代监督统计分类方法,称为迭代上下文像素分类(ICPC)。从通过像素分类获得的初始肋骨分割开始,ICPC通过基于原始特征以及待重新分类像素邻域中像素的类别标签信息对每个像素进行重新分类来更新它。该方法在从JSRT(日本放射技术学会)数据库获取的30张X光片上进行了评估。这些图像中肺野内的所有后肋均由两名观察者手动追踪。将第一位观察者的分割结果设为金标准;使用这些分割结果对ICPC进行训练。在六重交叉验证实验中,ICPC的分类准确率为0.86±0.06,而第二位人类观察者的准确率为0.94±0.02。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验