Suppr超能文献

胸部影像学五十年的计算机分析:基于规则、机器学习、深度学习

Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

作者信息

van Ginneken Bram

机构信息

Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Radiol Phys Technol. 2017 Mar;10(1):23-32. doi: 10.1007/s12194-017-0394-5. Epub 2017 Feb 16.

Abstract

Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

摘要

半个世纪前,“计算机辅助诊断”(CAD)一词在科学文献中首次出现。肺部成像,包括胸部X光和计算机断层扫描,一直是该领域的重点关注领域之一。在本研究中,我描述了机器学习如何成为解决肺部CAD的主导技术,其通常比传统的基于规则的方法产生更好的结果,以及该领域目前是如何迅速变化的:在过去几年中,我们已经看到深度学习能够取得更好的结果。针对CAD在胸部的各种应用,总结并说明了基于规则的处理、机器学习和深度学习之间的关键差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fe6/5337239/6b16d0ab7a82/12194_2017_394_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验