Suppr超能文献

线粒体分裂装置的结构、功能及进化

Structure, function and evolution of the mitochondrial division apparatus.

作者信息

Kuroiwa Tsuneyoshi, Nishida Keiji, Yoshida Yamato, Fujiwara Takayuki, Mori Toshiyuki, Kuroiwa Haruko, Misumi Osami

机构信息

Laboratory of Cell Biology and Frontier Project Life's Adaptation Strategies of Environmental Change, Department of Life Sciences, College of Science, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

出版信息

Biochim Biophys Acta. 2006 May-Jun;1763(5-6):510-21. doi: 10.1016/j.bbamcr.2006.03.007. Epub 2006 Apr 5.

Abstract

Mitochondria are derived from free-living alpha-proteobacteria that were engulfed by eukaryotic host cells through the process of endosymbiosis, and therefore have their own DNA which is organized using basic proteins to form organelle nuclei (nucleoids). Mitochondria divide and are split amongst the daughter cells during cell proliferation. Their division can be separated into two main events: division of the mitochondrial nuclei and division of the matrix (the so-called mitochondrial division, or mitochondriokinesis). In this review, we first focus on the cytogenetical relationships between mitochondrial nuclear division and mitochondriokinesis. Mitochondriokinesis occurs after mitochondrial nuclear division, similar to bacterial cytokinesis. We then describe the fine structure and dynamics of the mitochondrial division ring (MD ring) as a basic morphological background for mitochondriokinesis. Electron microscopy studies first identified a small electron-dense MD ring in the cytoplasm at the constriction sites of dividing mitochondria in the slime mold Physarum polycephalum, and then two large MD rings (with outer cytoplasmic and inner matrix sides) in the red alga Cyanidioschyzon merolae. Now MD rings have been found in all eukaryotes. In the third section, we describe the relationships between the MD ring and the FtsZ ring descended from ancestral bacteria. Other than the GTPase, FtsZ, mitochondria have lost most of the proteins required for bacterial cytokinesis as a consequence of endosymbiosis. The FtsZ protein forms an electron transparent ring (FtsZ or Z ring) in the matrix inside the inner MD ring. For the fourth section, we describe the dynamic association between the outer MD ring with a ring composed of the eukaryote-specific GTPase dynamin. Recent studies have revealed that eukaryote-specific GTPase dynamins form an electron transparent ring between the outer membrane and the MD ring. Thus, mitochondriokinesis is thought to be controlled by a mitochondrial division (MD) apparatus including a dynamic trio, namely the FtsZ, MD and dynamin rings, which consist of a chimera of rings from bacteria and eukaryotes in primitive organisms. Since the genes for the MD ring and dynamin rings are not found in the prokaryotic genome, the host genomes may make these rings to actively control mitochondrial division. In the fifth part, we focus on the dynamic changes in the formation and disassembly of the FtsZ, MD and dynamin rings. FtsZ rings are digested during a later period of mitochondrial division and then finally the MD and dynamin ring apparatuses pinched off the daughter mitochondria, supporting the idea that the host genomes are responsible for the ultimate control of mitochondrial division. We discuss the evolution, from the original vesicle division (VD) apparatuses to VD apparatuses including classical dynamin rings and MD apparatuses. It is likely that the MD apparatuses involving the dynamic trio evolved into the plastid division (PD) apparatus in Bikonta, while in Opisthokonta, the MD apparatus was simplified during evolution and may have branched into the mitochondrial fusion apparatus. Finally, we describe the possibility of intact isolation of large MD/PD apparatuses, the identification of all their proteins and their related genes using C. merolae genome information and TOF-MS analyses. These results will assist in elucidating the universal mechanism and evolution of MD, PD and VD apparatuses.

摘要

线粒体起源于自由生活的α-变形菌,这些细菌通过内共生过程被真核宿主细胞吞噬,因此拥有自己的DNA,这些DNA利用碱性蛋白质组装形成细胞器核(类核)。线粒体在细胞增殖过程中进行分裂并分配到子细胞中。它们的分裂可分为两个主要事件:线粒体核的分裂和基质的分裂(即所谓的线粒体分裂,或线粒体动态变化)。在本综述中,我们首先关注线粒体核分裂与线粒体动态变化之间的细胞遗传学关系。线粒体动态变化发生在线粒体核分裂之后,类似于细菌的胞质分裂。然后,我们描述线粒体分裂环(MD环)的精细结构和动态变化,作为线粒体动态变化的基本形态学背景。电子显微镜研究首先在多头绒泡菌中分裂线粒体的缢缩部位的细胞质中发现了一个小的电子致密MD环,然后在红藻梅氏嗜盐藻中发现了两个大的MD环(分别位于细胞质外侧和基质内侧)。现在,MD环已在所有真核生物中被发现。在第三部分,我们描述MD环与源自原始细菌的FtsZ环之间的关系。除了GTP酶FtsZ外,由于内共生作用,线粒体已经失去了细菌胞质分裂所需的大部分蛋白质。FtsZ蛋白在内侧MD环内部的基质中形成一个电子透明环(FtsZ或Z环)。在第四部分,我们描述外侧MD环与由真核生物特异性GTP酶发动蛋白组成的环之间的动态关联。最近的研究表明,真核生物特异性GTP酶发动蛋白在线粒体外膜和MD环之间形成一个电子透明环。因此,线粒体动态变化被认为受一种线粒体分裂(MD)装置控制,该装置包括一个动态三联体,即FtsZ、MD和发动蛋白环,它们在原始生物中由细菌和真核生物的环嵌合而成。由于在原核基因组中未发现MD环和发动蛋白环的基因,宿主基因组可能制造这些环以积极控制线粒体分裂。在第五部分,我们关注FtsZ、MD和发动蛋白环形成和拆卸过程中的动态变化。FtsZ环在线粒体分裂后期被消化,然后最终MD和发动蛋白环装置缢缩形成子线粒体,这支持了宿主基因组负责线粒体分裂最终控制的观点。我们讨论了从原始囊泡分裂(VD)装置到包括经典发动蛋白环的VD装置和MD装置的进化过程。涉及动态三联体的MD装置很可能在双鞭毛生物中进化成了质体分裂(PD)装置,而在后鞭毛生物中,MD装置在进化过程中被简化,可能分支形成了线粒体融合装置。最后,我们描述了利用梅氏嗜盐藻基因组信息和TOF-MS分析完整分离大型MD/PD装置、鉴定其所有蛋白质及其相关基因的可能性。这些结果将有助于阐明MD、PD和VD装置的普遍机制和进化过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验