Suppr超能文献

线粒体核分裂和线粒体分裂的分子与细胞机制。

Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis.

作者信息

Kuroiwa T, Ohta T, Kuroiwa H, Shigeyuki K

机构信息

Department of Biology, Faculty of Science, University of Tokyo, Hongo, Japan.

出版信息

Microsc Res Tech. 1994 Feb 15;27(3):220-32. doi: 10.1002/jemt.1070270304.

Abstract

Our present understanding of mitochondrial division can be summarized as follows: Mitochondria contain a specific genome, synthesize their own DNA, and multiply semi-autonomously. Strands of mitochondrial DNA (mt-DNA) in the in vivo organelles of all eukaryotes are organized to form mitochondrial nuclei (nucleoids) (mt-nuclei) with specific proteins including a histone-like protein and transcription factors at the central region of the mitochondrion. We can easily observe the mt-nucleus in vivo mitochondria in various organisms such as fungi, algae, plants, and animals by using high-resolution epifluorescence microscopy. Therefore, the process of mitochondrial division can be clearly separated into two main events: division of the mt-nuclei and mitochondriokinesis analogous to cytokinesis. Mitochondria undergo binary division which is accompanied by the division of the mt-nucleus. A remarkable characteristic of mitochondrial multiplication during the mitochondrial life cycle is that mitochondria can multiply the mt-chromosome by endoduplication until 50-100 copies are present. Mitochondria can then divide without mitochondrial DNA synthesis to eventually contain 1-5 copies of the mt-chromosome. This characteristic phenomenon can be observed during cell differentiation, such as during the formation of plasmodia and sclerotia of Physarum polycephalum and during embryogenesis and the formation of meristematic tissues in plants. The mitochondrial chromosome has a mitochondrial "kinetochore (centromere)" which is A-T rich and contains specific sequences such as topoisomerase binding sites, tandem repeats, and inverted repeats. A bridge of proteins may exist between the kinetochore DNA and membrane systems. Mitochondrial chromosomes can divide according to the growth of a membrane system between the kinetochores. Mitochondriokinesis progresses steadily along with mitochondrial nuclear division. As the membrane at the equatorial region of a mitochondrion contracts, the neck of the cleavage furrow narrows, and eventually the daughter mitochondria are separated. An actin-like protein may power mitochondriokinesis by separating the daughter mitochondria. In general, mitochondriokinesis occurs by contraction rather than by partition of the inner membrane.

摘要

我们目前对线粒体分裂的理解可总结如下

线粒体含有特定的基因组,能合成自身的DNA,并进行半自主增殖。所有真核生物体内细胞器中的线粒体DNA(mt-DNA)链会与特定蛋白质(包括一种组蛋白样蛋白和转录因子)一起,在线粒体的中心区域组装形成线粒体核(类核体)(mt-核)。通过使用高分辨率落射荧光显微镜,我们可以轻松观察到真菌、藻类、植物和动物等各种生物体体内线粒体中的mt-核。因此,线粒体分裂过程可清晰地分为两个主要事件:mt-核的分裂和类似于胞质分裂的线粒体分裂。线粒体进行二分分裂,并伴随着mt-核的分裂。线粒体生命周期中增殖的一个显著特征是,线粒体可通过核内复制使mt-染色体倍增,直至存在50 - 100个拷贝。然后线粒体可在不进行线粒体DNA合成的情况下分裂,最终每个线粒体含有1 - 5个mt-染色体拷贝。这种特征性现象可在细胞分化过程中观察到,如在多头绒泡菌的原质团和菌核形成过程中,以及在植物胚胎发生和分生组织形成过程中。线粒体染色体有一个富含A - T的线粒体“动粒(着丝粒)”,并含有拓扑异构酶结合位点、串联重复序列和反向重复序列等特定序列。动粒DNA与膜系统之间可能存在蛋白质桥。线粒体染色体可根据动粒之间膜系统的生长而分裂。线粒体分裂随着线粒体核分裂稳步进行。随着线粒体赤道区域的膜收缩,分裂沟的颈部变窄,最终子线粒体分离。一种肌动蛋白样蛋白可能通过分离子线粒体为线粒体分裂提供动力。一般来说,线粒体分裂是通过收缩而非内膜的分隔发生的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验