Guo Zhefeng, Eisenberg David
Howard Hughes Medical Institute, University of California, Los Angeles-Department of Energy Institute for Genomics and Proteomics, Molecular Biology Institute, Box 951570, University of California, Los Angeles, CA 90095-1570, USA.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8042-7. doi: 10.1073/pnas.0602607103. Epub 2006 May 12.
Amyloid fibrils are associated with >20 fatal human disorders, including Alzheimer's, Parkinson's, and prion diseases. Knowledge of how soluble proteins assemble into amyloid fibrils remains elusive despite its potential usefulness for developing diagnostics and therapeutics. In at least some fibrils, runaway domain swapping has been proposed as a possible mechanism for fibril formation. In runaway domain swapping, each protein molecule swaps a domain into the complementary domain of the adjacent molecule along the fibril. Here we show that T7 endonuclease I, a naturally domain-swapped dimeric protein, can form amyloid-like fibrils. Using protein engineering, we designed a double-cysteine mutant that forms amyloid-like fibrils in which molecules of T7 endonuclease I are linked by intermolecular disulfide bonds. Because the disulfide bonds are designed to form only at the domain-swapped dimer interface, the resulting covalently linked fibrils show that T7 endonuclease I forms fibrils by a runaway domain swap. In addition, we show that the disulfide mutant exists in two conformations, only one of which is able to form fibrils. We also find that domain-swapped dimers, if locked in a close-ended dimeric form, are unable to form fibrils. Our study provides strong evidence for runaway domain swapping in the formation of an amyloid-like fibril and, consequently, a molecular explanation for specificity and stability of fibrils. In addition, our results suggest that inhibition of fibril formation for domain-swapped proteins may be achieved by stabilizing domain-swapped dimers.
淀粉样纤维与20多种致命的人类疾病相关,包括阿尔茨海默病、帕金森病和朊病毒病。尽管了解可溶性蛋白质如何组装成淀粉样纤维对开发诊断方法和治疗手段可能有用,但相关知识仍然难以捉摸。在至少一些纤维中,失控的结构域交换被认为是纤维形成的一种可能机制。在失控的结构域交换中,每个蛋白质分子将一个结构域交换到沿着纤维相邻分子的互补结构域中。在此,我们表明T7核酸内切酶I,一种天然发生结构域交换的二聚体蛋白质,能够形成淀粉样纤维。通过蛋白质工程,我们设计了一种双半胱氨酸突变体,它能形成淀粉样纤维,其中T7核酸内切酶I的分子通过分子间二硫键相连。由于二硫键被设计为仅在结构域交换的二聚体界面形成,由此产生的共价连接纤维表明T7核酸内切酶I通过失控的结构域交换形成纤维。此外,我们表明二硫键突变体存在两种构象,其中只有一种能够形成纤维。我们还发现,如果结构域交换的二聚体被锁定为封闭的二聚体形式,则无法形成纤维。我们的研究为淀粉样纤维形成过程中的失控结构域交换提供了有力证据,从而为纤维的特异性和稳定性提供了分子解释。此外,我们的结果表明,对于结构域交换的蛋白质,抑制纤维形成可能通过稳定结构域交换的二聚体来实现。