Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China.
Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Int J Biol Macromol. 2022 Feb 1;197:68-76. doi: 10.1016/j.ijbiomac.2021.12.072. Epub 2021 Dec 22.
The C-terminal domain of SARS-CoV main protease (M-C) can form 3D domain-swapped dimer by exchanging the α-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that M-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some M-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.
SARS-CoV 主蛋白酶(M-C)的 C 端结构域可以在非变性条件下通过完全交换蛋白质疏水核心内部埋藏的α-螺旋,形成 3D 结构域交换二聚体。在这里,我们报告 M-C 也可以在体外 3D 结构域可交换条件下形成淀粉样纤维,并且纤维不是通过失控/传播的结构域交换形成的。发现在不同温度和不同突变体下,结构域交换二聚体和淀粉样纤维形成的速率之间存在正相关关系。然而,一些不能进行 3D 结构域交换的 M-C 突变体仍然可以形成淀粉样纤维,表明 3D 结构域交换对于淀粉样纤维形成不是必需的。此外,NMR H/D 交换数据和分子动力学模拟结果表明,原纤维核心区域在 3D 结构域交换的早期阶段倾向于解折叠,从而使得淀粉样纤维形成可以在 3D 结构域交换过程中进行。我们提出 3D 结构域交换使蛋白质的淀粉样片段解折叠成为可能,从而在动力学上加速了淀粉样纤维形成过程,这解释了在许多蛋白质中观察到的淀粉样纤维形成与 3D 结构域交换之间的良好记录相关性。