Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
J Biol Chem. 2011 Aug 19;286(33):28988-28995. doi: 10.1074/jbc.M111.261750. Epub 2011 Jun 28.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.
淀粉样纤维的形成是各种疾病的特征,但决定蛋白质是否、何时以及如何形成淀粉样纤维的潜在机制和因素仍不确定。某些机制是基于三维或失控的结构域交换提出的,这是受某些蛋白质在形成结构域交换二聚体的能力和形成纤维状聚集物的趋势之间存在明显相关性的启发。单体状态下存在的分子内β-折叠接触可以构成二聚体和纤维状状态下的分子间β-折叠。一个例子是链球菌蛋白 G 的免疫球蛋白结合域 B1 的淀粉样形成突变体,其在天然构象中由四条β-折叠链和一条α-螺旋组成。在天然条件下,这种突变体采用结构域交换二聚体,并且它还形成类似淀粉样的纤维,似乎与其结构域交换能力相关。我们使用魔角旋转固态 NMR 和其他方法来研究这些纤维的关键结构特征。我们的结果揭示了一种高度刚性的纤维结构,缺乏可移动结构域,并表明成熟纤维中存在平行的在位β-折叠结构和普遍丧失天然构象。这一观察结果与预测相反,即天然结构,特别是在二聚体状态下看到的分子间β-链相互作用,可能在“结构域交换”纤维中得到保留。我们根据最近关于具有类似机制的相关淀粉样形成蛋白的研究讨论了这些观察结果,以及这可能对结构域交换倾向在淀粉样形成中的作用有何影响。