Suppr超能文献

原子力显微镜用于蛋白质聚集的单分子特征分析。

Atomic force microscopy for single molecule characterisation of protein aggregation.

机构信息

Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.

Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

出版信息

Arch Biochem Biophys. 2019 Mar 30;664:134-148. doi: 10.1016/j.abb.2019.02.001. Epub 2019 Feb 8.

Abstract

The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.

摘要

原子力显微镜(AFM)的发展为纳米科学开辟了广泛的新机遇,并为复杂生物系统的新观察模式提供了可能。AFM 成像已被广泛用于解析蛋白质聚集过程中涉及的复杂和异质构象状态,揭示了多种人类疾病的分子基础,包括神经退行性疾病。然而,在纳米尺度上研究单个大分子仍然具有挑战性,特别是当需要完全定量信息时。在这篇综述中,我们首先讨论了 AFM 的原理,特别强调了决定其灵敏度和准确性的基本因素。然后,我们回顾了在 AFM 分辨率极限下工作的基本参数和方法,以对生物分子和纳米级蛋白质聚集体进行单分子统计分析。这种单分子统计方法已被证明是一种强大的工具,可以揭示蛋白质聚集过程中短暂存在的错误折叠物种的分子和层次组装,可视化它们在纳米尺度上的动力学,并研究淀粉样蛋白启发的功能纳米材料的结构特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/6420408/82bcd9d5f20e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验