Mbamala Emmanuel C, Fahr Alfred, May Sylvio
Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA.
Langmuir. 2006 May 23;22(11):5129-36. doi: 10.1021/la060180b.
The current interest in mixed cationic-zwitterionic lipid membranes derives from their potential use as transfer vectors in nonviral gene therapy. Mixed cationic-zwitterionic lipid membranes have a number of structural properties that are distinct from the corresponding anionic-zwitterionic lipid membranes. As known from experiment and reproduced by computer simulations, the average cross-sectional area per lipid changes nonmonotonically with the mole fraction of the charged lipid, passing through a minimum at a roughly equimolar mixture. At the same time, the average orientation of the zwitterionic headgroup dipoles changes from more parallel to the membrane plane to more perpendicular. We suggest a simple mean-field model that reveals the physical mechanisms underlying the observed structural properties. To backup the mean-field calculations, we have also performed Monte Carlo simulations. Our model extends Poisson-Boltzmann theory to include (besides the cationic headgroup charges) the individual charges of the zwitterionic lipid headgroups. We model these charges to be arranged as dipoles of fixed length with rotational degrees of freedom. Our model includes, in a phenomenological manner, the changes in steric headgroup interactions upon reorientation of the zwitterionic headgroups. Our numerical results suggest that two different mechanisms contribute to the observed structural properties: one involves the lateral electrostatic pressure and the other the zwitterionic headgroup orientation, the latter modifying steric headgroup interactions. The two mechanisms operate in parallel as they both originate in the electrostatic properties of the involved lipids. We have also applied our model to a mixed anionic-zwitterionic lipid membrane for which neither a significant headgroup reorientation nor a nonmonotonic change in the average lateral cross-sectional area is predicted.
当前对混合阳离子 - 两性离子脂质膜的关注源于它们在非病毒基因治疗中作为转移载体的潜在用途。混合阳离子 - 两性离子脂质膜具有许多与相应的阴离子 - 两性离子脂质膜不同的结构特性。从实验中可知并经计算机模拟重现,每个脂质的平均横截面积随带电脂质的摩尔分数非单调变化,在大致等摩尔混合物处达到最小值。同时,两性离子头基团偶极子的平均取向从更平行于膜平面变为更垂直。我们提出了一个简单的平均场模型,揭示了观察到的结构特性背后的物理机制。为了支持平均场计算,我们还进行了蒙特卡罗模拟。我们的模型扩展了泊松 - 玻尔兹曼理论,以包括(除了阳离子头基团电荷外)两性离子脂质头基团的单个电荷。我们将这些电荷建模为具有旋转自由度的固定长度偶极子。我们的模型以唯象方式包括了两性离子头基团重新取向时空间头基团相互作用的变化。我们的数值结果表明,两种不同的机制导致了观察到的结构特性:一种涉及横向静电压力,另一种涉及两性离子头基团取向,后者改变了空间头基团相互作用。这两种机制并行起作用,因为它们都源于所涉及脂质的静电性质。我们还将我们的模型应用于混合阴离子 - 两性离子脂质膜,对于该膜,预计既不会有明显的头基团重新取向,也不会有平均横向横截面积的非单调变化。