Suppr超能文献

免疫分析在临床化学中的发展历程与应用展望

A selected history and future of immunoassay development and applications in clinical chemistry.

作者信息

Wu Alan H B

机构信息

Department of Laboratory Medicine, University of California, San Francisco, Clinical Chemistry Laboratory, San Francisco General Hospital, San Francisco, CA 94110, USA.

出版信息

Clin Chim Acta. 2006 Jul 23;369(2):119-24. doi: 10.1016/j.cca.2006.02.045. Epub 2006 Mar 27.

Abstract

BACKGROUND

The first immunoassay was described by Berson and Yalow in 1959. Their work resulted in their receipt of the Nobel Prize in Medicine in 1977. Since this introduction, immunoassays have evolved considerably.

METHODS

There have been several milestones that have led to the proliferation of modern immunoassays. The development of monoclonal antibodies from mouse hydridoma cells by Millstein and Kohler (Nobel Prize in 1984) enabled the production of high quantities of antibodies with well characterized epitope specificity. The first homogenous immunoassay (no separation step required) was the Enzyme Multiplied Immunoassay Technique (EMIT), which enabled adaptation of this assay onto automated chemistry platforms. EMIT was also one of the first immunoassay that made use of non-isotopic labels. Other non-isotopic labels became available such as chemiluminescence to improve the analytical sensitivity of immunoassays. The advantages of high-sensitivity immunoassays have created expanded diagnostic roles for some existing assays such as thyroid stimulating hormone for hyperthyroidism, C-reactive protein for cardiovascular risk assessment, and other applications. The development of instrumentation capable of automated heterogeneous immunoassays (separation step to improve sensitivity) has enabled movement of this technology from the "special chemistry" sections of a clinical laboratory into the "core" laboratory with other high-volume testing.

CONCLUSION

Today, immunoassays play a prominent role in the analysis of many clinical laboratory analytes such as proteins, hormones, drugs, and nucleic acids. The future involves development of assays with higher sensitivities which will enable the discovery of new biomarkers for disease diagnosis, and technology that will enable simultaneous multimarker analysis of tests whose needs are naturally grouped together (e.g., cytokines and allergens).

摘要

背景

1959年,伯森和雅洛描述了第一种免疫测定法。他们的工作使他们在1977年获得了诺贝尔医学奖。自这种方法问世以来,免疫测定法有了很大的发展。

方法

有几个里程碑事件推动了现代免疫测定法的普及。米尔斯坦和科勒(1984年获得诺贝尔奖)从小鼠杂交瘤细胞中开发出单克隆抗体,使得能够大量生产具有明确表位特异性的抗体。第一种均相免疫测定法(无需分离步骤)是酶放大免疫测定技术(EMIT),它使这种测定法能够应用于自动化化学平台。EMIT也是最早使用非同位素标记的免疫测定法之一。其他非同位素标记,如化学发光,也已出现,以提高免疫测定法的分析灵敏度。高灵敏度免疫测定法的优势为一些现有测定法带来了更广泛的诊断作用,如用于甲状腺功能亢进症的促甲状腺激素、用于心血管风险评估的C反应蛋白以及其他应用。能够进行自动化异相免疫测定(通过分离步骤提高灵敏度)的仪器的开发,使这项技术从临床实验室的“特殊化学”部门转移到了与其他大量检测项目一起的“核心”实验室。

结论

如今,免疫测定法在分析许多临床实验室分析物,如蛋白质、激素、药物和核酸方面发挥着重要作用。未来需要开发灵敏度更高的测定法,这将有助于发现用于疾病诊断的新生物标志物,以及能够对自然归为一组的检测项目(如细胞因子和过敏原)进行同时多标志物分析的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验