Suppr超能文献

The application of in vivo microiontophoresis for the investigation of mast cell-neuron interactions in the rat brain.

作者信息

Koszegi Zsombor, Kovács Péter, Wilhelm Márta, Atlasz Tamás, Babai Norbert, Kállai Veronika, Hernádi István

机构信息

University of Pécs, Department of Experimental Zoology and Neurobiology, 6 Ifjúság street, H-7624, Pécs, Hungary.

出版信息

J Biochem Biophys Methods. 2006 Nov 30;69(1-2):227-31. doi: 10.1016/j.jbbm.2006.03.009. Epub 2006 Mar 27.

Abstract

Although mast cells are immune cells of hematopoietic origin, they can be found in parts of the central nervous system of many mammalian species. In the rat brain they are located in the thalamic region. Their function is not defined yet, although they are mostly known to secrete several chemicals, which may influence the surrounding neurons. There are no in vivo electrophysiological data available on the possible effects of brain mast cells on neurons. In this study, we used a combined method of microiontophoresis and extracellular single unit recording to simultaneously activate mast cells and record neuronal action potentials. Four-barrelled micropipettes were used for recording neuronal activity and for microiontophoretic application of mast cell degranulator Compound 48/80 (C48/80). Spike sorting routines were performed on-line and off-line to ensure that data were always recorded from a single neuron. C48/80 did not modify the firing rate of cortical neurons (no mast cells are found there), however, it caused excitation (n = 16/37, 43%), or inhibition (n = 9/37, 24%) in thalamic neurons possibly due to mast cell activation. Further investigations will clarify the biochemical nature of changes in neural excitability due to mast cell degranulation in the mammalian brain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验