Li Tingfeng, Iwaki Hiroaki, Fu Rong, Hasegawa Yoshie, Zhang Hong, Liu Aimin
Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
Biochemistry. 2006 May 30;45(21):6628-34. doi: 10.1021/bi060108c.
The enzymatic activity of Pseudomonas fluorescens alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is critically dependent on a transition metal ion [Li, T., Walker, A. L., Iwaki, H., Hasegawa, Y., and Liu, A. (2005) J. Am. Chem. Soc. 127, 12282-12290]. Sequence analysis in this study further suggests that ACMSD belongs to the amidohydrolase superfamily, whose structurally characterized members comprise a catalytically essential metal cofactor. To identify ACMSD's metal ligands and assess their functions in catalysis, a site-directed mutagenesis analysis was conducted. Alteration of His-9, His-177, and Asp-294 resulted in a dramatic loss of enzyme activity, substantial reduction of the metal-binding ability, and an altered metallocenter electronic structure. Thus, these residues are confirmed to be the endogenous metal ligands. His-11 is implicated in metal binding because of the strictly conserved HxH motif with His-9. Mutations at the 228 site yielded nearly inactive enzyme variants H228A and H228E. The two His-228 mutant proteins, however, exhibited full metal-binding ability and a metal center similar to that of the wild-type enzyme as shown by EPR spectroscopy. Kinetic analysis on the mutants indicates that His-228 is a critical catalytic residue along with the metal cofactor. Since the identified metal ligands and His-228 are present in all known ACMSD sequences, it is likely that ACMSD proteins from other organisms contain the same cofactor and share similar catalytic mechanisms. ACMSD is therefore the first characterized member in the amidohydrolase superfamily that represents a C-C breaking activity.
荧光假单胞菌α-氨基-β-羧基粘康酸-ε-半醛脱羧酶(ACMSD)的酶活性严重依赖于一种过渡金属离子[Li, T., Walker, A. L., Iwaki, H., Hasegawa, Y., and Liu, A. (2005) J. Am. Chem. Soc. 127, 12282 - 12290]。本研究中的序列分析进一步表明,ACMSD属于酰胺水解酶超家族,其结构已明确的成员包含一个催化必需的金属辅因子。为了鉴定ACMSD的金属配体并评估它们在催化中的作用,进行了定点诱变分析。组氨酸9、组氨酸177和天冬氨酸294的改变导致酶活性急剧丧失、金属结合能力大幅降低以及金属中心电子结构改变。因此,这些残基被确认为内源性金属配体。由于与组氨酸9具有严格保守的HxH基序,组氨酸11与金属结合有关。228位点的突变产生了几乎无活性的酶变体H228A和H228E。然而,如电子顺磁共振光谱所示,这两种组氨酸228突变蛋白表现出完全的金属结合能力以及与野生型酶相似的金属中心。对这些突变体的动力学分析表明,组氨酸228与金属辅因子一样是关键的催化残基。由于已鉴定的金属配体和组氨酸228存在于所有已知的ACMSD序列中,其他生物体中的ACMSD蛋白可能含有相同的辅因子并具有相似的催化机制。因此,ACMSD是酰胺水解酶超家族中第一个具有C - C断裂活性特征的成员。