Highbarger L A, Gerlt J A, Kenyon G L
Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA.
Biochemistry. 1996 Jan 9;35(1):41-6. doi: 10.1021/bi9518306.
Acetoacetate decarboxylase from Clostridium acetobutylicum (AAD) catalyzes the decarboxylation of acetoacetate via a Schiff base intermediate [Hamilton, G. A., & Westheimer, F. H. (1959) J. Am. Chem. Soc. 81, 6332; Fridovich, I., & Westheimer F. H. (1962) J. Am. Chem. Soc. 84, 3208]. The pKa of the active-site lysine (Lys 115) is 6.0, 4.5 pKa units less than the pKa of lysine in solution [Kokesh, F. C., & Westheimer, F. H. (1971) J. Am. Chem. Soc. 93, 7270; Frey, P. A., Kokesh, F. C., & Westheimer, F. H. (1971) J. Am. Chem. Soc. 93, 7266; Schmidt, D. E., Jr., & Westheimer, F. H. (1971) Biochemistry 10, 1249]. Westheimer and co-workers hypothesized that the pKa of Lys 115 is decreased by its spatial proximity to the epsilon-ammonium group of Lys 116. We have investigated this proposal by studying site-directed mutants of Lys 115 and Lys 116. Two substitutions for Lys 115 (K115C and K115Q) were both catalytically inactive at pH 5.95, the pH optimum of wild type AAD, demonstrating the importance of this residue in catalysis. Activity could be restored to K115C by aminoethylation with 2-bromoethyl-ammonium bromide (2-BEAB). Substitutions for Lys 116 (K116C, K116N, and K116R) had reduced but significant activities at pH 5.95. The effects of Lys 116 on the pKa of Lys 115 in the mutant AADs were evaluated following imine formation with 5-nitrosalicylaldehyde and reduction with NaBH4. Whereas the pKa of Lys 115 in K116R is similar to that observed for wild type AAD, the pKaS of Lys 115 in K116C and K116N were elevated to > 9.2. Alkylation of Cys 116 in K116C with 2-BEAB resulted in both significant activation and restoration of the pKa of Lys 115 to 5.9. These data support Westheimer's hypothesis that the pKa of the Schiff base-forming Lys 115 is decreased by its spatial proximity to the epsilon-ammonium group of Lys 116.
丙酮丁醇梭菌的乙酰乙酸脱羧酶(AAD)通过席夫碱中间体催化乙酰乙酸的脱羧反应[汉密尔顿,G. A.,& 韦斯特海默,F. H.(1959年)《美国化学会志》81,6332;弗里多维奇,I.,& 韦斯特海默,F. H.(1962年)《美国化学会志》84,3208]。活性位点赖氨酸(Lys 115)的pKa为6.0,比溶液中赖氨酸的pKa低4.5个pKa单位[科克什,F. C.,& 韦斯特海默,F. H.(1971年)《美国化学会志》93,7270;弗雷,P. A.,科克什,F. C.,& 韦斯特海默,F. H.(1971年)《美国化学会志》93,7266;施密特,D. E.,Jr.,& 韦斯特海默,F. H.(1971年)《生物化学》10,1249]。韦斯特海默及其同事推测,Lys 115的pKa因其与Lys 116的ε - 铵基团在空间上接近而降低。我们通过研究Lys 115和Lys 116的定点突变体来研究这一推测。Lys 115的两个替代物(K115C和K115Q)在野生型AAD的最适pH 5.95时均无催化活性,表明该残基在催化中的重要性。用2 - 溴乙基溴化铵(2 - BEAB)进行氨乙基化可使K115C恢复活性。Lys 116的替代物(K116C、K116N和K116R)在pH 5.95时活性降低但仍有显著活性。在用5 - 亚硝基水杨醛形成亚胺并用NaBH4还原后,评估了Lys 116对突变型AAD中Lys 115的pKa的影响。虽然K116R中Lys 115的pKa与野生型AAD中观察到的相似,但K116C和K116N中Lys 115的pKa升高至> 9.2。用2 - BEAB对K116C中的Cys 116进行烷基化导致显著活化并使Lys 115的pKa恢复至5.9。这些数据支持了韦斯特海默的假设,即形成席夫碱的Lys 115的pKa因其与Lys 116的ε - 铵基团在空间上接近而降低。