Suppr超能文献

灰度形态联想记忆

Gray-scale morphological associative memories.

作者信息

Sussner Peter, Valle Marcos Eduardo

机构信息

nstitute of Mathematics, Statistics, and Scientific Computation, State University of Campinas, Campinas, CEP13081-970, São Paulo, Brazil.

出版信息

IEEE Trans Neural Netw. 2006 May;17(3):559-70. doi: 10.1109/TNN.2006.873280.

Abstract

Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMMs) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In this paper, we make extensive use of minimax algebra to analyze gray-scale autoassociative morphological memories. Specifically, we provide a complete characterization of the fixed points and basins of attractions which allows us to describe the storage and recall mechanisms of gray-scale AMMs. Computer simulations using gray-scale images illustrate our rigorous mathematical results on the storage capacity and the noise tolerance of gray-scale morphological associative memories (MAMs). Finally, we introduce a modified gray-scale AMM model that yields a fixed point which is closest to the input pattern with respect to the Chebyshev distance and show how gray-scale AMMs can be used as classifiers.

摘要

联想记忆的神经模型通常关注二进制或双极模式的存储和检索。到目前为止,形态联想记忆系统的研究重点一直是二进制模型,尽管自联想形态记忆(AMM)的一些显著特征,如最优绝对存储容量和一步收敛,已被证明在一般的灰度设置中也成立。在本文中,我们广泛使用极小极大代数来分析灰度自联想形态记忆。具体而言,我们提供了不动点和吸引盆的完整刻画,这使我们能够描述灰度AMM的存储和召回机制。使用灰度图像的计算机模拟说明了我们关于灰度形态联想记忆(MAM)的存储容量和噪声容忍度的严格数学结果。最后,我们引入了一个修改后的灰度AMM模型,该模型产生一个相对于切比雪夫距离最接近输入模式的不动点,并展示了灰度AMM如何用作分类器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验