Suppr超能文献

一种用于判别分析的新型径向基函数神经网络。

A novel radial basis function neural network for discriminant analysis.

作者信息

Yang Zheng Rong

机构信息

Department of Computer Science, University of Exeter, Devon EX4 4QF, UK.

出版信息

IEEE Trans Neural Netw. 2006 May;17(3):604-12. doi: 10.1109/TNN.2006.873282.

Abstract

A novel radial basis function neural network for discriminant analysis is presented in this paper. In contrast to many other researches, this work focuses on the exploitation of the weight structure of radial basis function neural networks using the Bayesian method. It is expected that the performance of a radial basis function neural network with a well-explored weight structure can be improved. As the weight structure of a radial basis function neural network is commonly unknown, the Bayesian method is, therefore, used in this paper to study this a priori structure. Two weight structures are investigated in this study, i.e., a single-Gaussian structure and a two-Gaussian structure. An expectation-maximization learning algorithm is used to estimate the weights. The simulation results showed that the proposed radial basis function neural network with a weight structure of two Gaussians outperformed the other algorithms.

摘要

本文提出了一种用于判别分析的新型径向基函数神经网络。与许多其他研究不同,这项工作侧重于使用贝叶斯方法探索径向基函数神经网络的权重结构。期望具有充分探索的权重结构的径向基函数神经网络的性能能够得到提升。由于径向基函数神经网络的权重结构通常是未知的,因此本文使用贝叶斯方法来研究这种先验结构。本研究考察了两种权重结构,即单高斯结构和双高斯结构。采用期望最大化学习算法来估计权重。仿真结果表明,所提出的具有双高斯权重结构的径向基函数神经网络优于其他算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验