Suppr超能文献

CMAC神经网络的蒂霍诺夫训练

Tikhonov training of the CMAC neural network.

作者信息

Weruaga Luis, Kieslinger Barbara

机构信息

Commission for Scientific Visualization, Austrian Academy of Sciences, A-1220 Vienna, Austria.

出版信息

IEEE Trans Neural Netw. 2006 May;17(3):613-22. doi: 10.1109/TNN.2006.872348.

Abstract

The architecture of the cerebellar model articulation controller (CMAC) presents a rigid compromise between learning and generalization. In the presence of a sparse training dataset, this limitation manifestly causes overfitting, a drawback that is not overcome by current training algorithms. This paper proposes a novel training framework founded on the Tikhonov regularization, which relates to the minimization of the power of the sigma-order derivative. This smoothness criterion yields to an internal cell-interaction mechanism that increases the generalization beyond the degree hardcoded in the CMAC architecture while preserving the potential CMAC learning capabilities. The resulting training mechanism, which proves to be simple and computationally efficient, is deduced from a rigorous theoretical study. The performance of the new training framework is validated against comparative benchmarks from the DELVE environment.

摘要

小脑模型关节控制器(CMAC)的架构在学习和泛化之间存在严格的权衡。在稀疏训练数据集的情况下,这种限制明显会导致过拟合,这是当前训练算法无法克服的缺点。本文提出了一种基于蒂霍诺夫正则化的新型训练框架,该正则化与最小化σ阶导数的幂有关。这种平滑准则产生了一种内部细胞相互作用机制,该机制在保留CMAC潜在学习能力的同时,将泛化能力提高到超出CMAC架构中硬编码的程度。由此产生的训练机制被证明是简单且计算高效的,它是从严格的理论研究中推导出来的。新训练框架的性能通过与DELVE环境中的比较基准进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验