Madhavan S, Anghelina M, Rath-Deschner B, Wypasek E, John A, Deschner J, Piesco N, Agarwal S
Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA.
Osteoarthritis Cartilage. 2006 Oct;14(10):1023-32. doi: 10.1016/j.joca.2006.03.016. Epub 2006 May 30.
Physical therapies are commonly used for limiting joint inflammation. To gain insight into their mechanisms of actions for optimal usage, we examined persistence of mechanical signals generated by cyclic tensile strain (CTS) in chondrocytes, in vitro. We hypothesized that mechanical signals induce anti-inflammatory and anabolic responses that are sustained over extended periods.
Articular chondrocytes obtained from rats were subjected to CTS for various time intervals followed by a period of rest, in the presence of interleukin-1beta (IL-1beta). The induction for cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP)-9, MMP-13 and aggrecan was analyzed by real-time polymerase chain reaction (PCR), Western blot analysis and immunofluorescence.
Exposure of chondrocytes to constant CTS (3% CTS at 0.25 Hz) for 4-24 h blocked more than 90% (P<0.05) of the IL-1beta-induced transcriptional activation of proinflammatory genes, like iNOS, COX-2, MMP-9 and MMP-13, and abrogated inhibition of aggrecan synthesis. CTS exposure for 4, 8, 12, 16, or 20 h followed by a rest for 20, 16, 12, 8 or 4h, respectively, revealed that 8h of CTS optimally blocked (P<0.05) IL-1beta-induced proinflammatory gene induction for ensuing 16 h. However, CTS for 8h was not sufficient to inhibit iNOS expression for ensuing 28 or 40 h.
Data suggest that constant application of CTS blocks IL-1beta-induced proinflammatory genes at transcriptional level. The signals generated by CTS are sustained after its removal, and their persistence depends upon the length of CTS exposure. Furthermore, the sustained effects of mechanical signals are also reflected in their ability to induce aggrecan synthesis. These findings, once extrapolated to human chondrocytes, may provide insight in obtaining optimal sustained effects of physical therapies in the management of arthritic joints.
物理疗法常用于限制关节炎症。为深入了解其作用机制以实现最佳应用,我们在体外研究了循环拉伸应变(CTS)在软骨细胞中产生的机械信号的持续性。我们假设机械信号会诱导抗炎和合成代谢反应,并能在较长时间内持续。
从大鼠获取的关节软骨细胞在白细胞介素-1β(IL-1β)存在的情况下,接受不同时间间隔的CTS处理,随后有一段休息时间。通过实时聚合酶链反应(PCR)、蛋白质印迹分析和免疫荧光分析环氧合酶(COX-2)、诱导型一氧化氮合酶(iNOS)、基质金属蛋白酶(MMP)-9、MMP-13和聚集蛋白聚糖的诱导情况。
软骨细胞暴露于恒定CTS(0.25Hz下3% CTS)4 - 24小时可阻断超过90%(P<0.05)的IL-1β诱导的促炎基因转录激活,如iNOS、COX-2、MMP-9和MMP-13,并消除对聚集蛋白聚糖合成的抑制。分别进行4、8、12、16或20小时的CTS暴露,随后分别休息20、16、12、8或4小时,结果显示8小时的CTS能在随后16小时内最佳地阻断(P<0.05)IL-1β诱导的促炎基因诱导。然而,8小时的CTS不足以在随后28或40小时内抑制iNOS表达。
数据表明持续应用CTS可在转录水平阻断IL-1β诱导的促炎基因。CTS去除后产生的信号仍会持续,其持续性取决于CTS暴露的时长。此外,机械信号的持续效应还体现在其诱导聚集蛋白聚糖合成的能力上。一旦将这些发现外推至人类软骨细胞,可能会为在关节炎关节管理中获得物理疗法的最佳持续效果提供见解。