Suppr超能文献

蛋白质片段的结构多样性遵循幂律分布。

Structural diversity of protein segments follows a power-law distribution.

作者信息

Sawada Yoshito, Honda Shinya

机构信息

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

出版信息

Biophys J. 2006 Aug 15;91(4):1213-23. doi: 10.1529/biophysj.105.076661. Epub 2006 May 26.

Abstract

The local structures of protein segments were classified and their distribution was analyzed to explore the structural diversity of proteins. Representative proteins were divided into short segments using a sliding L-residue window. Each set of local structures consisting of consecutive 1-31 amino acids was classified using a single-pass clustering method. The results demonstrate that the local structures of proteins are very unevenly distributed in the protein universe. The distribution of local structures of relatively long segments shows a power-law behavior that is formulated well by Zipf's law, implying that a protein structure possesses recursive and fractal characteristics. The degree of effective conformational freedom per residue as well as the structure entropy per residue decreases gradually with an increasing value of L and then converges to constant values. This suggests that the number of protein conformations resides within the range between 1.2L and 1.5L and that 10- to 20-residue segments are already proteinlike in terms of their structural diversity.

摘要

对蛋白质片段的局部结构进行分类,并分析其分布情况,以探索蛋白质的结构多样性。使用滑动L残基窗口将代表性蛋白质划分为短片段。每组由连续1 - 31个氨基酸组成的局部结构采用单遍聚类方法进行分类。结果表明,蛋白质的局部结构在蛋白质世界中分布非常不均匀。相对较长片段的局部结构分布呈现幂律行为,可用齐普夫定律很好地描述,这意味着蛋白质结构具有递归和分形特征。每个残基的有效构象自由度以及每个残基的结构熵随着L值的增加而逐渐降低,然后收敛到恒定值。这表明蛋白质构象的数量在1.2L和1.5L之间,并且就结构多样性而言,10至20个残基的片段已经具有蛋白质样特征。

相似文献

1
Structural diversity of protein segments follows a power-law distribution.
Biophys J. 2006 Aug 15;91(4):1213-23. doi: 10.1529/biophysj.105.076661. Epub 2006 May 26.
2
A framework for direct locating and conformational sampling of protein structural motifs.
Protein Pept Lett. 2011 May;18(5):488-97. doi: 10.2174/092986611794927965.
3
Covariation analysis of local amino acid sequences in recurrent protein local structures.
J Bioinform Comput Biol. 2005 Dec;3(6):1391-409. doi: 10.1142/s0219720005001648.
4
Random sequences with power-law correlations exhibit proteinlike behavior.
J Chem Phys. 2007 Apr 14;126(14):145103. doi: 10.1063/1.2714944.
5
Underlying hydrophobic sequence periodicity of protein tertiary structure.
J Biomol Struct Dyn. 2005 Feb;22(4):411-23. doi: 10.1080/07391102.2005.10507013.
6
Protein secondary structure: entropy, correlations and prediction.
Bioinformatics. 2004 Jul 10;20(10):1603-11. doi: 10.1093/bioinformatics/bth132. Epub 2004 Feb 26.
7
Improving homology models for protein-ligand binding sites.
Comput Syst Bioinformatics Conf. 2008;7:211-22.
8
Local structure prediction with local structure-based sequence profiles.
Bioinformatics. 2003 Jul 1;19(10):1267-74. doi: 10.1093/bioinformatics/btg151.
9
FAMS and FAMSBASE for protein structure.
Curr Protoc Bioinformatics. 2004 Feb;Chapter 5:Unit5.2. doi: 10.1002/0471250953.bi0502s04.

引用本文的文献

1
Complex evolutionary footprints revealed in an analysis of reused protein segments of diverse lengths.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11703-11708. doi: 10.1073/pnas.1707642114. Epub 2017 Oct 19.
2
Word decoding of protein amino Acid sequences with availability analysis: a linguistic approach.
PLoS One. 2012;7(11):e50039. doi: 10.1371/journal.pone.0050039. Epub 2012 Nov 21.
3
Scale-free behaviour of amino acid pair interactions in folded proteins.
PLoS One. 2012;7(7):e41322. doi: 10.1371/journal.pone.0041322. Epub 2012 Jul 26.
4
Convergent evolution in structural elements of proteins investigated using cross profile analysis.
BMC Bioinformatics. 2012 Jan 16;13:11. doi: 10.1186/1471-2105-13-11.
5
Universal partitioning of the hierarchical fold network of 50-residue segments in proteins.
BMC Struct Biol. 2009 May 20;9:34. doi: 10.1186/1472-6807-9-34.
6
ProSeg: a database of local structures of protein segments.
J Comput Aided Mol Des. 2009 Mar;23(3):163-9. doi: 10.1007/s10822-008-9248-x. Epub 2008 Oct 16.

本文引用的文献

2
Protein conformational space in higher order phi-Psi maps.
Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):618-21. doi: 10.1073/pnas.0408746102. Epub 2005 Jan 7.
3
10 residue folded peptide designed by segment statistics.
Structure. 2004 Aug;12(8):1507-18. doi: 10.1016/j.str.2004.05.022.
4
The number of protein folds and their distribution over families in nature.
Proteins. 2004 Feb 15;54(3):491-9. doi: 10.1002/prot.10514.
5
CASP5 assessment of fold recognition target predictions.
Proteins. 2003;53 Suppl 6:395-409. doi: 10.1002/prot.10557.
6
PISCES: a protein sequence culling server.
Bioinformatics. 2003 Aug 12;19(12):1589-91. doi: 10.1093/bioinformatics/btg224.
7
A global representation of the protein fold space.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2386-90. doi: 10.1073/pnas.2628030100. Epub 2003 Feb 26.
8
The structure of the protein universe and genome evolution.
Nature. 2002 Nov 14;420(6912):218-23. doi: 10.1038/nature01256.
9
Expanding protein universe and its origin from the biological Big Bang.
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14132-6. doi: 10.1073/pnas.202497999. Epub 2002 Oct 16.
10
Folding as grammar.
Nat Struct Biol. 2002 Oct;9(10):713. doi: 10.1038/nsb1002-713.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验