Suppr超能文献

神经网络与突触可塑性:通过将神经元与硅技术相结合来理解复杂系统动力学。

Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies.

作者信息

Colicos Michael A, Syed Naweed I

机构信息

Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.

出版信息

J Exp Biol. 2006 Jun;209(Pt 12):2312-9. doi: 10.1242/jeb.02163.

Abstract

Information processing in the central nervous system is primarily mediated through synaptic connections between neurons. This connectivity in turn defines how large ensembles of neurons may coordinate network output to execute complex sensory and motor functions including learning and memory. The synaptic connectivity between any given pair of neurons is not hard-wired; rather it exhibits a high degree of plasticity, which in turn forms the basis for learning and memory. While there has been extensive research to define the cellular and molecular basis of synaptic plasticity, at the level of either pairs of neurons or smaller networks, analysis of larger neuronal ensembles has proved technically challenging. The ability to monitor the activities of larger neuronal networks simultaneously and non-invasively is a necessary prerequisite to understanding how neuronal networks function at the systems level. Here we describe recent breakthroughs in the area of various bionic hybrids whereby neuronal networks have been successfully interfaced with silicon devices to monitor the output of synaptically connected neurons. These technologies hold tremendous potential for future research not only in the area of synaptic plasticity but also for the development of strategies that will enable implantation of electronic devices in live animals during various memory tasks.

摘要

中枢神经系统中的信息处理主要通过神经元之间的突触连接来介导。这种连接性反过来又决定了大量神经元如何协调网络输出,以执行包括学习和记忆在内的复杂感觉和运动功能。任何给定的一对神经元之间的突触连接并非固定不变;相反,它表现出高度的可塑性,这反过来又构成了学习和记忆的基础。虽然已经进行了广泛的研究来确定突触可塑性的细胞和分子基础,无论是在成对神经元还是较小网络的层面上,但对更大神经元集合的分析在技术上已证明具有挑战性。同时且无创地监测更大神经元网络活动的能力是理解神经元网络在系统层面如何运作的必要前提。在此,我们描述了各种仿生混合体领域的最新突破,通过这些突破,神经元网络已成功与硅器件连接,以监测突触连接神经元的输出。这些技术不仅在突触可塑性领域,而且在开发能够在各种记忆任务期间将电子设备植入活体动物的策略方面,都具有巨大的未来研究潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验