Fusi Stefano
Institute of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
Biol Cybern. 2002 Dec;87(5-6):459-70. doi: 10.1007/s00422-002-0356-8.
Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.
突触可塑性被认为是形成适当连接模式的基础,这些连接模式可稳定皮层中刺激选择性的回响。在此,我们提出一个通用的定量框架,用于研究平均发放率模式的学习和记忆过程。基于材料(生物或电子)突触装置局限性的一般考量表明,大多数学习网络都具有重写本特性:旧刺激会被遗忘,以便为新刺激腾出空间。为了防止遗忘过快,可以引入一种随机机制,仅选择一小部分突触在刺激呈现时发生变化。通过利用待编码的突触前和突触后活动中的噪声波动,这种机制可以很容易地实现。这里描述的发放驱动的突触动力学可以实现这样一种选择机制,以实现缓慢学习,这被证明能使网络作为联想记忆的性能最大化。