Suppr超能文献

辅激活因子相互作用决定转录输出。

Coactivator cross-talk specifies transcriptional output.

作者信息

Marr Michael T, Isogai Yoh, Wright Kevin J, Tjian Robert

机构信息

Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.

出版信息

Genes Dev. 2006 Jun 1;20(11):1458-69. doi: 10.1101/gad.1418806.

Abstract

Cells often fine-tune gene expression at the level of transcription to generate the appropriate response to a given environmental or developmental stimulus. Both positive and negative influences on gene expression must be balanced to produce the correct level of mRNA synthesis. To this end, the cell uses several classes of regulatory coactivator complexes including two central players, TFIID and Mediator (MED), in potentiating activated transcription. Both of these complexes integrate activator signals and convey them to the basal apparatus. Interestingly, many promoters require both regulatory complexes, although at first glance they may seem to be redundant. Here we have used RNA interference (RNAi) in Drosophila cells to selectively deplete subunits of the MED and TFIID complexes to dissect the contribution of each of these complexes in modulating activated transcription. We exploited the robust response of the metallothionein genes to heavy metal as a model for transcriptional activation by analyzing direct factor recruitment in both heterogeneous cell populations and at the single-cell level. Intriguingly, we find that MED and TFIID interact functionally to modulate transcriptional response to metal. The metal response element-binding transcription factor-1 (MTF-1) recruits TFIID, which then binds promoter DNA, setting up a "checkpoint complex" for the initiation of transcription that is subsequently activated upon recruitment of the MED complex. The appropriate expression level of the endogenous metallothionein genes is achieved only when the activities of these two coactivators are balanced. Surprisingly, we find that the same activator (MTF-1) requires different coactivator subunits depending on the context of the core promoter. Finally, we find that the stability of multi-subunit coactivator complexes can be compromised by loss of a single subunit, underscoring the potential for combinatorial control of transcription activation.

摘要

细胞常常在转录水平上微调基因表达,以对特定的环境或发育刺激产生适当的反应。对基因表达的正向和负向影响都必须保持平衡,才能产生正确水平的mRNA合成。为此,细胞利用了几类调节性共激活复合物,其中包括两个核心成分,即TFIID和中介体(MED),来增强激活的转录。这两种复合物都整合激活因子信号,并将其传递给基础转录装置。有趣的是,许多启动子都需要这两种调节复合物,尽管乍一看它们似乎是多余的。在这里,我们利用果蝇细胞中的RNA干扰(RNAi)来选择性地消耗MED和TFIID复合物的亚基,以剖析这些复合物中每一个在调节激活转录中的作用。我们通过分析异质细胞群体和单细胞水平上的直接因子募集,利用金属硫蛋白基因对重金属的强烈反应作为转录激活的模型。有趣的是,我们发现MED和TFIID在功能上相互作用,以调节对金属的转录反应。金属反应元件结合转录因子-1(MTF-1)募集TFIID,然后TFIID结合启动子DNA,建立一个转录起始的“检查点复合物”,随后在募集MED复合物时被激活。只有当这两种共激活因子的活性保持平衡时,才能实现内源性金属硫蛋白基因的适当表达水平。令人惊讶的是,我们发现同一个激活因子(MTF-1)根据核心启动子的背景需要不同的共激活因子亚基。最后,我们发现单个亚基缺失会损害多亚基共激活复合物的稳定性,这突出了转录激活组合控制的潜力。

相似文献

1
Coactivator cross-talk specifies transcriptional output.
Genes Dev. 2006 Jun 1;20(11):1458-69. doi: 10.1101/gad.1418806.
2
TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12347-52. doi: 10.1073/pnas.0605499103. Epub 2006 Aug 8.
3
The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals.
Mol Cell Biol. 2001 Jul;21(14):4505-14. doi: 10.1128/MCB.21.14.4505-4514.2001.
5
The mediator coactivator complex: functional and physical roles in transcriptional regulation.
J Cell Sci. 2003 Sep 15;116(Pt 18):3667-75. doi: 10.1242/jcs.00734.

引用本文的文献

3
Regulome-based characterization of drug activity across the human diseasome.
NPJ Syst Biol Appl. 2022 Nov 7;8(1):44. doi: 10.1038/s41540-022-00255-4.
4
The Mediator complex as a master regulator of transcription by RNA polymerase II.
Nat Rev Mol Cell Biol. 2022 Nov;23(11):732-749. doi: 10.1038/s41580-022-00498-3. Epub 2022 Jun 20.
6
Gawky modulates MTF-1-mediated transcription activation and metal discrimination.
Nucleic Acids Res. 2021 Jun 21;49(11):6296-6314. doi: 10.1093/nar/gkab474.
7
Dietary Phytochemicals in Zinc Homeostasis: A Strategy for Prostate Cancer Management.
Nutrients. 2021 May 30;13(6):1867. doi: 10.3390/nu13061867.
8
TFIID Enables RNA Polymerase II Promoter-Proximal Pausing.
Mol Cell. 2020 May 21;78(4):785-793.e8. doi: 10.1016/j.molcel.2020.03.008. Epub 2020 Mar 30.
9
Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans.
PLoS Genet. 2019 Dec 9;15(12):e1008508. doi: 10.1371/journal.pgen.1008508. eCollection 2019 Dec.
10
The Integrator complex cleaves nascent mRNAs to attenuate transcription.
Genes Dev. 2019 Nov 1;33(21-22):1525-1538. doi: 10.1101/gad.330167.119. Epub 2019 Sep 17.

本文引用的文献

1
Mediator requirement for both recruitment and postrecruitment steps in transcription initiation.
Mol Cell. 2005 Mar 4;17(5):683-94. doi: 10.1016/j.molcel.2005.02.010.
2
Testis-specific TAF homologs collaborate to control a tissue-specific transcription program.
Development. 2004 Nov;131(21):5297-308. doi: 10.1242/dev.01314. Epub 2004 Sep 29.
4
Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex.
Mol Cell. 2004 Jun 4;14(5):675-83. doi: 10.1016/j.molcel.2004.05.014.
5
Regulatory diversity among metazoan co-activator complexes.
Nat Rev Mol Cell Biol. 2004 May;5(5):403-10. doi: 10.1038/nrm1369.
6
Polycomb silencing blocks transcription initiation.
Mol Cell. 2004 Mar 26;13(6):887-93. doi: 10.1016/s1097-2765(04)00128-5.
7
From silencing to gene expression: real-time analysis in single cells.
Cell. 2004 Mar 5;116(5):683-98. doi: 10.1016/s0092-8674(04)00171-0.
8
Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex.
Mol Cell Biol. 2004 Feb;24(4):1721-35. doi: 10.1128/MCB.24.4.1721-1735.2004.
9
Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway.
Genes Dev. 2003 Aug 15;17(16):2006-20. doi: 10.1101/gad.1098703. Epub 2003 Jul 31.
10
In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray.
Methods. 2003 Sep;31(1):90-5. doi: 10.1016/s1046-2023(03)00092-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验