Suppr超能文献

利用空间表观基因组学96通道微流控平台改进细胞类型识别和调控特征的全面图谱绘制。

Improved cell-type identification and comprehensive mapping of regulatory features with spatial epigenomics 96-channel microfluidic platform.

作者信息

Kartiganer Zev, Rojas Gumaro, Riccio Machele, Tyree Abigail, Noronha Katelyn, Wetzel Molly, Barnett Joshua, McGann James, Garbarino Jennifer, Massucci Daniel, Chafi Nouroddin Sotoudeh, Decker Silas, McDaniels Arianna, Sabina Jeffrey, Levchenko David, Perez Jose, Ng Colin, Wang Kenneth

机构信息

Engineering, AtlasXomics, Inc., New Haven, CT.

Biology, AtlasXomics, Inc., New Haven, CT.

出版信息

GEN Biotechnol. 2023 Dec;2(6):503-514. doi: 10.1089/genbio.2023.0044. Epub 2023 Dec 15.

Abstract

Gene expression is subject to epigenetic regulation and is dependent upon cellular context. Spatial omics tools can provide insight into cellular context; however, development has centered on spatial transcriptomics and proteomics. Deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) was the first spatial epigenomics platform at the cellular level. Here we present a comparison of spatial epigenomic profiling on both 50-channel and 96-channel platforms. The new 96-channel microfluidics chip design greatly improved precision in cell typing and identification of regulatory elements by spatial-ATAC-seq. Spatial mapping reveals complexity of glial cell and neuronal localization within brain structures as well as cis-regulatory elements controlling cellular function. This technology streamlines spatial analysis of the epigenome and contributes a new layer of spatial omics to uncover the context dependent regulatory mechanisms underpinning development, disease, and normal cellular function.

摘要

基因表达受表观遗传调控,且依赖于细胞环境。空间组学工具可以深入了解细胞环境;然而,其发展主要集中在空间转录组学和蛋白质组学上。用于空间组学测序的组织确定性条形码(DBiT-seq)是首个细胞水平的空间表观基因组学平台。在此,我们展示了在50通道和96通道平台上进行的空间表观基因组分析的比较。新型96通道微流控芯片设计通过空间ATAC-seq极大地提高了细胞分型和调控元件识别的精度。空间图谱揭示了脑结构内胶质细胞和神经元定位的复杂性以及控制细胞功能的顺式调控元件。这项技术简化了表观基因组的空间分析,并为空间组学增添了新的层面,以揭示支撑发育、疾病和正常细胞功能的环境依赖性调控机制。

相似文献

2
Computational solutions for spatial transcriptomics.
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
3
Spatial profiling of chromatin accessibility in mouse and human tissues.
Nature. 2022 Sep;609(7926):375-383. doi: 10.1038/s41586-022-05094-1. Epub 2022 Aug 17.
4
Chromatin accessibility profiling of targeted cell populations with laser capture microdissection coupled to ATAC-seq.
Cell Rep Methods. 2023 Oct 23;3(10):100598. doi: 10.1016/j.crmeth.2023.100598. Epub 2023 Sep 29.
5
High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue.
Cell. 2020 Dec 10;183(6):1665-1681.e18. doi: 10.1016/j.cell.2020.10.026. Epub 2020 Nov 13.
6
Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue.
Nat Protoc. 2024 Nov;19(11):3389-3425. doi: 10.1038/s41596-024-01013-y. Epub 2024 Jun 28.
7
Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes.
Neuron. 2021 Jan 6;109(1):11-26. doi: 10.1016/j.neuron.2020.12.010.
8
Spatial multi-omics sequencing for fixed tissue via DBiT-seq.
STAR Protoc. 2021 May 11;2(2):100532. doi: 10.1016/j.xpro.2021.100532. eCollection 2021 Jun 18.
10
Transcriptomics and epigenetic data integration learning module on Google Cloud.
Brief Bioinform. 2024 Jul 23;25(Supplement_1). doi: 10.1093/bib/bbae352.

引用本文的文献

1
New tools to study renal fibrogenesis.
Curr Opin Nephrol Hypertens. 2024 Jul 1;33(4):420-426. doi: 10.1097/MNH.0000000000000988. Epub 2024 Apr 8.

本文引用的文献

1
Spatial epigenome-transcriptome co-profiling of mammalian tissues.
Nature. 2023 Apr;616(7955):113-122. doi: 10.1038/s41586-023-05795-1. Epub 2023 Mar 15.
2
High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq.
Nat Biotechnol. 2023 Oct;41(10):1405-1409. doi: 10.1038/s41587-023-01676-0. Epub 2023 Feb 23.
3
Loss of epigenetic information as a cause of mammalian aging.
Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.
4
Regulome-based characterization of drug activity across the human diseasome.
NPJ Syst Biol Appl. 2022 Nov 7;8(1):44. doi: 10.1038/s41540-022-00255-4.
5
Spatial profiling of chromatin accessibility in mouse and human tissues.
Nature. 2022 Sep;609(7926):375-383. doi: 10.1038/s41586-022-05094-1. Epub 2022 Aug 17.
8
Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level.
Science. 2022 Feb 11;375(6581):681-686. doi: 10.1126/science.abg7216. Epub 2022 Feb 10.
9
Epigenetic landscape of drug responses revealed through large-scale ChIP-seq data analyses.
BMC Bioinformatics. 2022 Jan 24;23(1):51. doi: 10.1186/s12859-022-04571-8.
10
Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches.
Cell. 2022 Jan 20;185(2):379-396.e38. doi: 10.1016/j.cell.2021.12.018. Epub 2022 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验