Suppr超能文献

自然图像统计与高效编码。

Natural image statistics and efficient coding.

作者信息

Olshausen B A, Field D J

机构信息

Department of Psychology, Uris Hall, Cornell University, Ithaca, NY 14853, USA.

出版信息

Network. 1996 May;7(2):333-9. doi: 10.1088/0954-898X/7/2/014.

Abstract

Natural images contain characteristic statistical regularities that set them apart from purely random images. Understanding what these regularities are can enable natural images to be coded more efficiently. In this paper, we describe some of the forms of structure that are contained in natural images, and we show how these are related to the response properties of neurons at early stages of the visual system. Many of the important forms of structure require higher-order (i.e. more than linear, pairwise) statistics to characterize, which makes models based on linear Hebbian learning, or principal components analysis, inappropriate for finding efficient codes for natural images. We suggest that a good objective for an efficient coding of natural scenes is to maximize the sparseness of the representation, and we show that a network that learns sparse codes of natural scenes succeeds in developing localized, oriented, bandpass receptive fields similar to those in the mammalian striate cortex.

摘要

自然图像包含使其有别于纯随机图像的特征性统计规律。了解这些规律是什么能够使自然图像得到更高效的编码。在本文中,我们描述了自然图像中所包含的一些结构形式,并展示了这些形式与视觉系统早期阶段神经元的响应特性之间的关系。许多重要的结构形式需要高阶(即非线性、非成对)统计量来表征,这使得基于线性赫布学习或主成分分析的模型不适用于寻找自然图像的高效编码。我们认为,对自然场景进行高效编码的一个良好目标是使表示的稀疏性最大化,并且我们表明,一个学习自然场景稀疏编码的网络成功地发展出了类似于哺乳动物纹状皮层中的局部化、有方向的带通感受野。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验