Suppr超能文献

异戊二烯和聚酮生物合成机制的融合:枯草芽孢杆菌pksX途径中的异戊烯基-S-载体蛋白

Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis.

作者信息

Calderone Christopher T, Kowtoniuk Walter E, Kelleher Neil L, Walsh Christopher T, Dorrestein Pieter C

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8977-82. doi: 10.1073/pnas.0603148103. Epub 2006 Jun 6.

Abstract

The pksX gene cluster from Bacillus subtilis is predicted to encode the biosynthesis of an as yet uncharacterized hybrid nonribosomal peptide/polyketide secondary metabolite. We used a combination of biochemical and mass spectrometric techniques to assign functional roles to the proteins AcpK, PksC, PksL, PksF, PksG, PksH, and PksI, and we conclude that they act to incorporate an acetate-derived beta-methyl branch on an acetoacetyl-S-carrier protein and ultimately generate a Delta(2)-isoprenyl-S-carrier protein. This work highlights the power of mass spectrometry to elucidate the functions of orphan biosynthetic enzymes, and it details a mechanism by which single-carbon beta-branches can be inserted into polyketide-like structures. This pathway represents a noncanonical route to the construction of prenyl units and serves as a prototype for the intersection of isoprenoid and polyketide biosynthetic manifolds in other natural product biosynthetic pathways.

摘要

预测来自枯草芽孢杆菌的pksX基因簇编码一种尚未鉴定的杂合非核糖体肽/聚酮类次生代谢产物的生物合成。我们结合生化和质谱技术来确定蛋白质AcpK、PksC、PksL、PksF、PksG、PksH和PksI的功能作用,我们得出结论,它们的作用是在乙酰乙酰-S-载体蛋白上引入一个源自乙酸盐的β-甲基分支,并最终生成一个Δ(2)-异戊烯基-S-载体蛋白。这项工作突出了质谱在阐明孤儿生物合成酶功能方面的作用,并详细说明了单碳β-分支可以插入聚酮类结构的机制。该途径代表了一种非经典的异戊烯基单元构建途径,并作为其他天然产物生物合成途径中类异戊二烯和聚酮生物合成流交叉的原型。

相似文献

1
Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8977-82. doi: 10.1073/pnas.0603148103. Epub 2006 Jun 6.
4
Insights into the pamamycin biosynthesis.
Angew Chem Int Ed Engl. 2015 Feb 9;54(7):2280-4. doi: 10.1002/anie.201408901. Epub 2014 Dec 23.
6
Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis.
Appl Microbiol Biotechnol. 2007 Jul;75(6):1377-84. doi: 10.1007/s00253-007-0953-5. Epub 2007 Apr 26.
7
8
The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1506-9. doi: 10.1073/pnas.0610503104. Epub 2007 Jan 18.
9
Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.
J Bacteriol. 2009 Aug;191(15):4916-23. doi: 10.1128/JB.00407-09. Epub 2009 May 22.
10
Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.
PLoS One. 2013 Jun 19;8(6):e66104. doi: 10.1371/journal.pone.0066104. Print 2013.

引用本文的文献

1
Molecular Basis for Short-Chain Thioester Hydrolysis by Acyl Hydrolases in -Acyltransferase Polyketide Synthases.
JACS Au. 2024 Nov 18;5(1):144-157. doi: 10.1021/jacsau.4c00837. eCollection 2025 Jan 27.
3
Divergent Tandem Acyl Carrier Proteins Necessitate In-Series Polyketide Processing in the Leinamycin Family.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414165. doi: 10.1002/anie.202414165. Epub 2024 Nov 6.
5
6
Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase.
Angew Chem Weinheim Bergstr Ger. 2023 Nov 20;135(47):e202312514. doi: 10.1002/ange.202312514. Epub 2023 Oct 16.
7
Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin.
Angew Chem Weinheim Bergstr Ger. 2022 Dec 12;134(50):e202212393. doi: 10.1002/ange.202212393. Epub 2022 Nov 10.
8
Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202312514. doi: 10.1002/anie.202312514. Epub 2023 Oct 17.
9
Decrypting the programming of β-methylation in virginiamycin M biosynthesis.
Nat Commun. 2023 Mar 10;14(1):1327. doi: 10.1038/s41467-023-36974-3.

本文引用的文献

1
Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis.
Nature. 2006 Mar 16;440(7082):368-71. doi: 10.1038/nature04544.
3
Discovery of a new peptide natural product by Streptomyces coelicolor genome mining.
Nat Chem Biol. 2005 Oct;1(5):265-9. doi: 10.1038/nchembio731. Epub 2005 Sep 11.
4
The thiolase superfamily: condensing enzymes with diverse reaction specificities.
Trends Biochem Sci. 2006 Jan;31(1):64-71. doi: 10.1016/j.tibs.2005.11.011. Epub 2005 Dec 13.
5
Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis.
Nature. 2005 Aug 25;436(7054):1191-4. doi: 10.1038/nature03797.
6
Polyisoprenoids: structure, biosynthesis and function.
Prog Lipid Res. 2005 Jul;44(4):235-58. doi: 10.1016/j.plipres.2005.05.002.
7
SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10111-6. doi: 10.1073/pnas.0504412102. Epub 2005 Jul 7.
9
Bacillus subtilis antibiotics: structures, syntheses and specific functions.
Mol Microbiol. 2005 May;56(4):845-57. doi: 10.1111/j.1365-2958.2005.04587.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验