Suppr超能文献

在存在团注延迟和弥散的情况下改进灌注MRI数据的去卷积

Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion.

作者信息

Willats Lisa, Connelly Alan, Calamante Fernando

机构信息

Radiology and Physics Unit, Institute of Child Health, University College London, London, UK.

出版信息

Magn Reson Med. 2006 Jul;56(1):146-56. doi: 10.1002/mrm.20940.

Abstract

Cerebral blood flow (CBF) is commonly estimated from the maximum of the residue function deconvolved from bolus-tracking data. The bolus may become delayed and/or dispersed in the vessels feeding the tissue, resulting in the calculation of an effective residue function, Reff(t), whose shape reflects the distortion of the bolus as well as the hemodynamic tissue status. Consequently the CBF is often underestimated. Since regularizing the deconvolution introduces additional distortions to Reff(t), it is impossible to distinguish a true decrease in the CBF from bias introduced by abnormal vasculature. This may result in misidentification of tissue regions at risk of infarction, which could have serious clinical consequences. We propose a modified maximum-likelihood expectation-maximization (mML-EM) method, which is shown by way of simulations to improve the characterization of Reff(t) across a wide range of shapes. A pointwise termination approach for the iteration minimizes the effects of noise, and appropriate integral approximations minimize discretization errors. mML-EM was applied to data from a patient with left internal carotid artery (ICA) occlusion. The shape of each calculated Reff(t) was used to create a map indicating voxels affected by bolus delay and/or dispersion, where CBF estimates are inherently unreliable. Such maps would be a useful adjunct for interpreting bolus-tracking data.

摘要

脑血流量(CBF)通常是根据从团注追踪数据反卷积得到的残差函数的最大值来估算的。团注在向组织供血的血管中可能会延迟和/或分散,从而导致计算出有效残差函数Reff(t),其形状反映了团注的畸变以及血流动力学组织状态。因此,CBF常常被低估。由于对反卷积进行正则化会给Reff(t)引入额外的畸变,所以无法区分CBF的真正降低与异常血管系统引入的偏差。这可能导致对有梗死风险的组织区域的错误识别,从而产生严重的临床后果。我们提出了一种改进的最大似然期望最大化(mML-EM)方法,通过模拟表明该方法能在广泛的形状范围内改善对Reff(t)的表征。迭代的逐点终止方法可将噪声的影响降至最低,适当的积分近似可将离散化误差降至最低。mML-EM被应用于一名左颈内动脉(ICA)闭塞患者的数据。每个计算出的Reff(t)的形状被用于创建一个地图,指示受团注延迟和/或分散影响的体素,在这些体素中,CBF估计本质上是不可靠的。这样的地图将是解释团注追踪数据的有用辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验