Suppr超能文献

探索机器学习在胃癌中的潜力:预后生物标志物、亚型分类及分层

Exploring the potential of machine learning in gastric cancer: prognostic biomarkers, subtyping, and stratification.

作者信息

Rafiepoor Haniyeh, Banoei Mohammad M, Ghorbankhanloo Alireza, Muhammadnejad Ahad, Razavirad Amirhossein, Soleymanjahi Saeed, Amanpour Saeid

机构信息

Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Keshavarz Blvd, Building, Tehran, Iran.

Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada.

出版信息

BMC Cancer. 2025 Apr 30;25(1):809. doi: 10.1186/s12885-025-14204-x.

Abstract

BACKGROUND

Advancements in the management of gastric cancer (GC) and innovative therapeutic approaches highlight the significance of the role of biomarkers in GC prognosis. Machine-learning (ML)-based methods can be applied to identify the most important predictors and unravel their interactions to classify patients, which might guide prioritized treatment decisions.

METHODS

A total of 140 patients with histopathological confirmed GC who underwent surgery between 2011 and 2016 were enrolled in the study. The inspired modification of the partial least squares (SIMPLS)-based model was used to identify the most significant predictors and interactions between variables. Predictive partition analysis was employed to establish the decision tree model to prioritize markers for clinical use. ML models have also been developed to predict TNM stage and different subtypes of GC. Latent class analysis (LCA) and principal component analysis (PCA) were carried out to cluster the GC patients and to find a subgroup of survivors who tended to die.

RESULTS

The findings revealed that the SIMPLS method was able to predict the mortality of GC patients with high predictabilities (Q = 0.45-0.70). The analysis identified MMP-7, P53, Ki67, and vimentin as the top predictors. Correlation analysis revealed different patterns of prognostic markers in the non-survivor and survivor cohorts and different GC subtypes. The main prediction models were verified via other ML-based analyses, with a high area under the curve (AUC) (0.84-0.99), specificity (0.82-0.99) and sensitivity (0.87-0.99). Patients were classified into three clusters of mortality risk, which highlighted the most significant mortality predictors. Partition analysis prioritizes the most significant predictors P53 ≥ 6, COX-2 > 2, vimentin > 2, Ki67 ≥ 13 in mortality of patients (AUC = 0.85-0.90).

CONCLUSION

The present study highlights the importance of considering multiple variables and their interactions to predict the prognosis of mortality and stage in GC patients through ML-based techniques. These findings suggest that the incorporation of molecular biomarkers may enhance patient prognosis compared to relying solely on clinical factors. Furthermore, they demonstrate the potential for personalized medicine in GC treatment by identifying high-risk patients for early intervention and optimizing therapeutic strategies. The partition analysis technique offers a practical tool for identifying cutoffs and prioritizing markers for clinical application. Additionally, providing Clinical Decision Support systems with predictive tools can assist clinicians and pathologists in identifying aggressive cases, thereby improving patient outcomes while minimizing unnecessary treatments. Overall, this study contributes to the ongoing efforts to improve patient outcomes by advancing our comprehension of the intricate nature of GC.

摘要

背景

胃癌(GC)管理方面的进展和创新治疗方法凸显了生物标志物在GC预后中作用的重要性。基于机器学习(ML)的方法可用于识别最重要的预测指标并揭示它们之间的相互作用以对患者进行分类,这可能有助于指导优先治疗决策。

方法

共有140例在2011年至2016年间接受手术且经组织病理学确诊为GC的患者纳入本研究。基于改进的偏最小二乘法(SIMPLS)模型用于识别最显著的预测指标以及变量之间的相互作用。采用预测性划分分析建立决策树模型,以确定临床使用的优先标志物。还开发了ML模型来预测GC的TNM分期和不同亚型。进行潜在类别分析(LCA)和主成分分析(PCA)以对GC患者进行聚类,并找出倾向于死亡的存活者亚组。

结果

研究结果显示,SIMPLS方法能够以较高的预测能力预测GC患者的死亡率(Q = 0.45 - 0.70)。分析确定基质金属蛋白酶-7(MMP-7)、P53、Ki67和波形蛋白为首要预测指标。相关性分析揭示了非存活者和存活者队列以及不同GC亚型中预后标志物的不同模式。主要预测模型通过其他基于ML的分析得到验证,曲线下面积(AUC)较高(0.84 - 0.99),特异性(0.82 - 0.99)和敏感性(0.87 - 0.99)。患者被分为三个死亡风险类别,突出了最显著的死亡预测指标。划分分析确定患者死亡时最重要的预测指标为P53≥6、环氧合酶-2(COX-2)>2、波形蛋白>2、Ki67≥13(AUC = 0.85 - 0.90)。

结论

本研究强调了通过基于ML的技术考虑多个变量及其相互作用以预测GC患者死亡率和分期预后的重要性。这些发现表明,与仅依赖临床因素相比,纳入分子生物标志物可能会改善患者预后。此外,它们通过识别高危患者进行早期干预和优化治疗策略,证明了GC治疗中个性化医疗的潜力。划分分析技术为确定临界值和确定临床应用标志物的优先级提供了实用工具。此外,为临床决策支持系统提供预测工具可帮助临床医生和病理学家识别侵袭性病例,从而在尽量减少不必要治疗的同时改善患者结局。总体而言,本研究通过加深我们对GC复杂本质的理解,为改善患者结局的持续努力做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaaa/12042310/863605852e4d/12885_2025_14204_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验