Bolboacă Sorana, Jäntschi Lorentz
Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Romania. http://sorana.academicdirect.ro
AMIA Annu Symp Proc. 2005;2005:66-70.
Likelihood Ratio medical key parameters calculated on categorical results from diagnostic tests are usually express accompanied with their confidence intervals, computed using the normal distribution approximation of binomial distribution. The approximation creates known anomalies,especially for limit cases. In order to improve the quality of estimation, four new methods (called here RPAC, RPAC0, RPAC1, and RPAC2) were developed and compared with the classical method (called here RPWald), using an exact probability calculation algorithm.Computer implementations of the methods use the PHP language. We defined and implemented the functions of the four new methods and the five criterions of confidence interval assessment. The experiments run for samples sizes which vary in 14 - 34 range, 90 - 100 range (0 < X < m, 0< Y < n), as well as for random numbers for samples sizes (4m, n </= 1000) and binomial variables (1 </= X, Y < m, n). The experiment run shows that the new proposed RPAC2 method obtains the best overall performance of computing confidence interval for positive and negative likelihood ratios.
根据诊断测试的分类结果计算的似然比医学关键参数通常会连同其置信区间一起表示,置信区间是使用二项分布的正态分布近似计算得出的。这种近似会产生已知的异常情况,尤其是在极限情况下。为了提高估计质量,开发了四种新方法(这里称为RPAC、RPAC0、RPAC1和RPAC2),并使用精确概率计算算法将它们与经典方法(这里称为RPWald)进行比较。这些方法的计算机实现使用PHP语言。我们定义并实现了四种新方法的函数以及置信区间评估的五个标准。实验针对样本量在14 - 34范围、90 - 100范围(0 < X < m,0 < Y < n)内变化的情况进行,以及针对样本量的随机数(4m,n ≤ 1000)和二项变量(1 ≤ X,Y < m,n)进行。实验结果表明,新提出的RPAC2方法在计算阳性和阴性似然比的置信区间方面获得了最佳的总体性能。