Suppr超能文献

MammoSys:一种基于乳腺密度模式的图像内容检索系统。

MammoSys: A content-based image retrieval system using breast density patterns.

机构信息

Universidade Federal de Minas Gerais, Departamento de Ciência da Computação, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil.

出版信息

Comput Methods Programs Biomed. 2010 Sep;99(3):289-97. doi: 10.1016/j.cmpb.2010.01.005. Epub 2010 Mar 7.

Abstract

In this paper, we present a content-based image retrieval system designed to retrieve mammographies from large medical image database. The system is developed based on breast density, according to the four categories defined by the American College of Radiology, and is integrated to the database of the Image Retrieval in Medical Applications (IRMA) project, that provides images with classification ground truth. Two-dimensional principal component analysis is used in breast density texture characterization, in order to effectively represent texture and allow for dimensionality reduction. A support vector machine is used to perform the retrieval process. Average precision rates are in the range from 83% to 97% considering a data set of 5024 images. The results indicate the potential of the system as the first stage of a computer-aided diagnosis framework.

摘要

本文提出了一个基于内容的医学图像检索系统,旨在从大型医学图像数据库中检索乳腺 X 光片。该系统是根据美国放射学院定义的四类乳腺密度开发的,并集成到医学图像检索应用(IRMA)项目的数据库中,该数据库提供了具有分类真实标签的图像。二维主成分分析用于乳腺密度纹理特征化,以有效地表示纹理并允许降维。支持向量机用于执行检索过程。考虑到 5024 张图像的数据集,平均精度率在 83%到 97%之间。结果表明,该系统作为计算机辅助诊断框架的第一阶段具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验